scholarly journals A flexible framework for multi-particle refinement in cryo-electron tomography

PLoS Biology ◽  
2021 ◽  
Vol 19 (8) ◽  
pp. e3001319
Author(s):  
Alister Burt ◽  
Lorenzo Gaifas ◽  
Tom Dendooven ◽  
Irina Gutsche

Cryo-electron tomography (cryo-ET) and subtomogram averaging (STA) are increasingly used for macromolecular structure determination in situ. Here, we introduce a set of computational tools and resources designed to enable flexible approaches to STA through increased automation and simplified metadata handling. We create a bidirectional interface between the Dynamo software package and the Warp-Relion-M pipeline, providing a framework for ab initio and geometrical approaches to multiparticle refinement in M. We illustrate the power of working within this framework by applying it to EMPIAR-10164, a publicly available dataset containing immature HIV-1 virus-like particles (VLPs), and a challenging in situ dataset containing chemosensory arrays in bacterial minicells. Additionally, we provide a comprehensive, step-by-step guide to obtaining a 3.4-Å reconstruction from EMPIAR-10164. The guide is hosted on https://teamtomo.org/, a collaborative online platform we establish for sharing knowledge about cryo-ET.

Author(s):  
Alister Burt ◽  
Lorenzo Gaifas ◽  
Tom Dendooven ◽  
Irina Gutsche

AbstractCryo-electron tomography and subtomogram averaging are increasingly used for macromolecular structure determination in situ. Here we introduce a set of computational tools and resources designed to enable flexible approaches to subtomogram averaging. In particular, our tools simplify metadata handling, increase automation, and interface the Dynamo software package with the Warp-Relion-M pipeline. We provide a framework for ab initio and geometrical approaches to subtomogram averaging combining tools from these packages. We illustrate the power of working within the framework enabled by our developments by applying it to EMPIAR-10164, a publicly available dataset containing immature HIV-1 virus-like particles, and a challenging in situ dataset containing chemosensory arrays in bacterial minicells. Additionally, we establish an open and collaborative online platform for sharing knowledge and tools related to cryo-electron tomography data processing. To this platform, we contribute a comprehensive guide to obtaining state-of-the-art results from EMPIAR-10164.


2020 ◽  
Author(s):  
Danielle Grotjahn ◽  
Saikat Chowdhury ◽  
Gabriel C. Lander

AbstractCryo-electron tomography is a powerful biophysical technique enabling three-dimensional visualization of complex biological systems. Macromolecular targets of interest identified within cryo-tomograms can be computationally extracted, aligned, and averaged to produce a better-resolved structure through a process called subtomogram averaging (STA). However, accurate alignment of macromolecular machines that exhibit extreme structural heterogeneity and conformational flexibility remains a significant challenge with conventional STA approaches. To expand the applicability of STA to a broader range of pleomorphic complexes, we developed a user-guided, focused refinement approach that can be incorporated into the standard STA workflow to facilitate the robust alignment of particularly challenging samples. We demonstrate that it is possible to align visually recognizable portions of multi-subunit complexes by providing a priori information regarding their relative orientations within cryo-tomograms, and describe how this strategy was applied to successfully elucidate the first three-dimensional structure of the dynein-dynactin motor protein complex bound to microtubules. Our approach expands the application of STA for solving a more diverse range of heterogeneous biological structures, and establishes a conceptual framework for the development of automated strategies to deconvolve the complexity of crowded cellular environments and improve in situ structure determination technologies.


2020 ◽  
Vol 26 (S2) ◽  
pp. 3142-3145
Author(s):  
Paula Navarro ◽  
Stefano Scaramuzza ◽  
Henning Stahlberg ◽  
Daniel Castaño-Díez

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Yury S Bykov ◽  
Miroslava Schaffer ◽  
Svetlana O Dodonova ◽  
Sahradha Albert ◽  
Jürgen M Plitzko ◽  
...  

COPI-coated vesicles mediate trafficking within the Golgi apparatus and from the Golgi to the endoplasmic reticulum. The structures of membrane protein coats, including COPI, have been extensively studied with in vitro reconstitution systems using purified components. Previously we have determined a complete structural model of the in vitro reconstituted COPI coat (Dodonova et al., 2017). Here, we applied cryo-focused ion beam milling, cryo-electron tomography and subtomogram averaging to determine the native structure of the COPI coat within vitrified Chlamydomonas reinhardtii cells. The native algal structure resembles the in vitro mammalian structure, but additionally reveals cargo bound beneath β’–COP. We find that all coat components disassemble simultaneously and relatively rapidly after budding. Structural analysis in situ, maintaining Golgi topology, shows that vesicles change their size, membrane thickness, and cargo content as they progress from cis to trans, but the structure of the coat machinery remains constant.


2019 ◽  
Vol 5 (11) ◽  
pp. eaaw3631 ◽  
Author(s):  
Katarzyna A. Skorupka ◽  
Marcin D. Roganowicz ◽  
Devin E. Christensen ◽  
Yueping Wan ◽  
Owen Pornillos ◽  
...  

TRIM5α is a restriction factor that senses incoming retrovirus cores through an unprecedented mechanism of nonself recognition. TRIM5α assembles a hexagonal lattice that avidly binds the capsid shell, which surrounds and protects the virus core. The extent to which the TRIM lattice can cover the capsid and how TRIM5α directly contacts the capsid surface have not been established. Here, we apply cryo–electron tomography and subtomogram averaging to determine structures of TRIM5α bound to recombinant HIV-1 capsid assemblies. Our data support a mechanism of hierarchical assembly, in which a limited number of basal interaction modes are successively organized in increasingly higher-order structures that culminate in a TRIM5α cage surrounding a retroviral capsid. We further propose that cage formation explains the mechanism of restriction and provides the structural context that links capsid recognition to ubiquitin-dependent processes that disable the retrovirus.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shrawan Kumar Mageswaran ◽  
Amandine Guérin ◽  
Liam M. Theveny ◽  
William David Chen ◽  
Matthew Martinez ◽  
...  

AbstractParasites of the phylum Apicomplexa cause important diseases including malaria, cryptosporidiosis and toxoplasmosis. These intracellular pathogens inject the contents of an essential organelle, the rhoptry, into host cells to facilitate invasion and infection. However, the structure and mechanism of this eukaryotic secretion system remain elusive. Here, using cryo-electron tomography and subtomogram averaging, we report the conserved architecture of the rhoptry secretion system in the invasive stages of two evolutionarily distant apicomplexans, Cryptosporidium parvum and Toxoplasma gondii. In both species, we identify helical filaments, which appear to shape and compartmentalize the rhoptries, and an apical vesicle (AV), which facilitates docking of the rhoptry tip at the parasite’s apical region with the help of an elaborate ultrastructure named the rhoptry secretory apparatus (RSA); the RSA anchors the AV at the parasite plasma membrane. Depletion of T. gondii Nd9, a protein required for rhoptry secretion, disrupts the RSA ultrastructure and AV-anchoring. Moreover, T. gondii contains a line of AV-like vesicles, which interact with a pair of microtubules and accumulate towards the AV, leading to a working model for AV-reloading and discharging of multiple rhoptries. Together, our analyses provide an ultrastructural framework to understand how these important parasites deliver effectors into host cells.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Philipp S. Erdmann ◽  
Zhen Hou ◽  
Sven Klumpe ◽  
Sagar Khavnekar ◽  
Florian Beck ◽  
...  

AbstractRibosomes comprise a large (LSU) and a small subunit (SSU) which are synthesized independently in the nucleolus before being exported into the cytoplasm, where they assemble into functional ribosomes. Individual maturation steps have been analyzed in detail using biochemical methods, light microscopy and conventional electron microscopy (EM). In recent years, single particle analysis (SPA) has yielded molecular resolution structures of several pre-ribosomal intermediates. It falls short, however, of revealing the spatiotemporal sequence of ribosome biogenesis in the cellular context. Here, we present our study on native nucleoli in Chlamydomonas reinhardtii, in which we follow the formation of LSU and SSU precursors by in situ cryo-electron tomography (cryo-ET) and subtomogram averaging (STA). By combining both positional and molecular data, we reveal gradients of ribosome maturation within the granular component (GC), offering a new perspective on how the liquid-liquid-phase separation of the nucleolus supports ribosome biogenesis.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Steffen Klein ◽  
Mirko Cortese ◽  
Sophie L. Winter ◽  
Moritz Wachsmuth-Melm ◽  
Christopher J. Neufeldt ◽  
...  

AbstractSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the COVID19 pandemic, is a highly pathogenic β-coronavirus. As other coronaviruses, SARS-CoV-2 is enveloped, replicates in the cytoplasm and assembles at intracellular membranes. Here, we structurally characterize the viral replication compartment and report critical insights into the budding mechanism of the virus, and the structure of extracellular virions close to their native state by in situ cryo-electron tomography and subtomogram averaging. We directly visualize RNA filaments inside the double membrane vesicles, compartments associated with viral replication. The RNA filaments show a diameter consistent with double-stranded RNA and frequent branching likely representing RNA secondary structures. We report that assembled S trimers in lumenal cisternae do not alone induce membrane bending but laterally reorganize on the envelope during virion assembly. The viral ribonucleoprotein complexes (vRNPs) are accumulated at the curved membrane characteristic for budding sites suggesting that vRNP recruitment is enhanced by membrane curvature. Subtomogram averaging shows that vRNPs are distinct cylindrical assemblies. We propose that the genome is packaged around multiple separate vRNP complexes, thereby allowing incorporation of the unusually large coronavirus genome into the virion while maintaining high steric flexibility between the vRNPs.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Martin Obr ◽  
Clifton L. Ricana ◽  
Nadia Nikulin ◽  
Jon-Philip R. Feathers ◽  
Marco Klanschnig ◽  
...  

AbstractInositol hexakisphosphate (IP6) is an assembly cofactor for HIV-1. We report here that IP6 is also used for assembly of Rous sarcoma virus (RSV), a retrovirus from a different genus. IP6 is ~100-fold more potent at promoting RSV mature capsid protein (CA) assembly than observed for HIV-1 and removal of IP6 in cells reduces infectivity by 100-fold. Here, visualized by cryo-electron tomography and subtomogram averaging, mature capsid-like particles show an IP6-like density in the CA hexamer, coordinated by rings of six lysines and six arginines. Phosphate and IP6 have opposing effects on CA in vitro assembly, inducing formation of T = 1 icosahedrons and tubes, respectively, implying that phosphate promotes pentamer and IP6 hexamer formation. Subtomogram averaging and classification optimized for analysis of pleomorphic retrovirus particles reveal that the heterogeneity of mature RSV CA polyhedrons results from an unexpected, intrinsic CA hexamer flexibility. In contrast, the CA pentamer forms rigid units organizing the local architecture. These different features of hexamers and pentamers determine the structural mechanism to form CA polyhedrons of variable shape in mature RSV particles.


2019 ◽  
Author(s):  
Reika Watanabe ◽  
Robert Buschauer ◽  
Jan Böhning ◽  
Martina Audagnotto ◽  
Keren Lasker ◽  
...  

Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most frequent cause of familial Parkinson’s disease. LRRK2 is a multi-domain protein containing a kinase and GTPase. Using in situ cryo-electron tomography and subtomogram averaging, we reveal a 14-Å structure of LRRK2 bearing a pathogenic mutation that oligomerizes as a right-handed double-helix around microtubules, which are left-handed. Using integrative modeling, we determine the architecture of LRRK2, showing that the GTPase points towards the microtubule, while the kinase is exposed to the cytoplasm. We identify two oligomerization interfaces mediated by non-catalytic domains. Mutation of one of these abolishes LRRK2 microtubule-association. Our work demonstrates the power of cryo-electron tomography to obtain structures of previously unsolved proteins in their cellular environment and provides insights into LRRK2 function and pathogenicity.


Sign in / Sign up

Export Citation Format

Share Document