A Method for Observing Silver-Stained Osteocytes In Situ in 3-μm Sections Using Ultra-High Voltage Electron Microscopy Tomography

2009 ◽  
Vol 15 (5) ◽  
pp. 377-383 ◽  
Author(s):  
Hiroshi Kamioka ◽  
Sakhr A. Murshid ◽  
Yoshihito Ishihara ◽  
Naoko Kajimura ◽  
Toshiaki Hasegawa ◽  
...  

AbstractOsteocytes are surrounded by hard bone matrix, and it has not been possible previously to directly observe the in situ architecture of osteocyte morphology in bone. Electron microscope tomography, however, is a technique that has the unique potential to provide three-dimensional (3D) visualization of cellular ultrastructure. This approach is based on reconstruction of 3D volumes from a tilt series of electron micrographs of cells, and resolution at the nanometer level has been achieved. We applied electron microscope tomography to thick sections of silver-stained osteocytes in bone using a Hitachi H-3000 ultra-high voltage electron microscope equipped with a 360° tilt specimen holder, at an accelerating voltage of 2 MeV. Osteocytes with numerous processes and branches were clearly seen in the serial tilt series acquired from 3-μm-thick sections. Reconstruction of young osteocytes showed the 3D topographic morphology of the cell body and processes at high resolution. This morphological data on osteocytes should provide useful information to those who study osteocyte physiology and the several models used to explain their mechanosensory properties.

Microscopy ◽  
2014 ◽  
Vol 63 (suppl 1) ◽  
pp. i25.1-i25 ◽  
Author(s):  
Ryuji Nishi ◽  
Meng Cao ◽  
Atsuko Kanaji ◽  
Tomoki Nishida ◽  
Kiyokazu Yoshida ◽  
...  

Author(s):  
W. E. King

A side-entry type, helium-temperature specimen stage that has the capability of in-situ electrical-resistivity measurements has been designed and developed for use in the AEI-EM7 1200-kV electron microscope at Argonne National Laboratory. The electrical-resistivity measurements complement the high-voltage electron microscope (HVEM) to yield a unique opportunity to investigate defect production in metals by electron irradiation over a wide range of defect concentrations.A flow cryostat that uses helium gas as a coolant is employed to attain and maintain any specified temperature between 10 and 300 K. The helium gas coolant eliminates the vibrations that arise from boiling liquid helium and the temperature instabilities due to alternating heat-transfer mechanisms in the two-phase temperature regime (4.215 K). Figure 1 shows a schematic view of the liquid/gaseous helium transfer system. A liquid-gas mixture can be used for fast cooldown. The cold tip of the transfer tube is inserted coincident with the tilt axis of the specimen stage, and the end of the coolant flow tube is positioned without contact within the heat exchanger of the copper specimen block (Fig. 2).


Author(s):  
Brenda R. Eisenberg ◽  
Lee D. Peachey

Analysis of the electrical properties of the t-system requires knowledge of the geometry of the t-system network. It is now possible to determine the network parameters experimentally by use of high voltage electron microscopy. The t-system was marked with exogenous peroxidase. Conventional methods of electron microscopy were used to fix and embed the sartorius muscle from four frogs. Transverse slices 0.5-1.0 μm thick were viewed at an accelerating voltage of 1000 kV using the JEM-1000 high voltage electron microscope at Boulder, Colorado and prints at x5000 were used for analysis.The length of a t-branch (t) from node to node (Fig. 1a) was measured with a magnifier; at least 150 t-branches around 30 myofibrils were measured from each frog. The mean length of t is 0.90 ± 0.11 μm and the number of branches per myofibril is 5.4 ± 0.2 (mean ± SD, n = 4 frogs).


Sign in / Sign up

Export Citation Format

Share Document