scholarly journals Effect of the route and sintering time in the microstructure of pure aluminum prepared by high energy ball milling

2021 ◽  
Vol 27 (S1) ◽  
pp. 3294-3296
Author(s):  
José Mendoza ◽  
C. Carreño-Gallardo ◽  
I. Estrada-Guel ◽  
C.G. Garay-Reyes ◽  
M.A. Ruiz-Esparza-Rodriguez ◽  
...  
2014 ◽  
Vol 802 ◽  
pp. 125-129
Author(s):  
Heronilton Mendes de Lira ◽  
Pilar Rey Rodriguez ◽  
Oscar Olimpio de Araújo Filho ◽  
Cezar Henrique Gonzalez ◽  
Severino Leopoldino Urtiga Filho

High performance nanostructured light metals and alloys are very interesting for replacing conventional heavier materials in many industrial components. High Energy Ball Milling and Cryomilling are useful techniques to obtain nanocrystalline powders. In this work the effect of several milling conditions such as rotation speed, time, ball to powder ratio and temperature on the crystallite and particle size and morphology in pure aluminum are presented. X-Ray Diffraction, Laser Diffraction and Scanning Electron Microscopy are used. High energy ball milling at ambient and cryogenic temperature of Al powders rapidly leads to a nanometer size down to about 35 nm. High ball to powder ratio promotes both low crystallite and particle size. Small crystallite size like 18 nm and particle size as 4 μm were achieved in the most energetic conditions at ambient temperature. Isopropyl alcohol used as liquid media and protective atmosphere has a strong influence on the results depending on the milling temperature of Al.


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 728
Author(s):  
Roberto Gómez Batres ◽  
Zelma S. Guzmán Escobedo ◽  
Karime Carrera Gutiérrez ◽  
Irene Leal Berumen ◽  
Abel Hurtado Macias ◽  
...  

Air plasma spray technique (APS) is widely used in the biomedical industry for the development of HA-based biocoatings. The present study focuses on the influence of powder homogenization treatment by high-energy ball milling (HEBM) in developing a novel hydroxyapatite-barium titanate (HA/BT) composite coating deposited by APS; in order to compare the impact of the milling process, powders were homogenized by mechanical stirring homogenization (MSH) too. For the two-homogenization process, three weight percent ratios were studied; 10%, 30%, and 50% w/w of BT in the HA matrix. The phase and crystallite size were analyzed by X-ray diffraction patterns (XRD); the BT-phase distribution in the coating was analyzed by backscattered electron image (BSE) with a scanning electron microscope (SEM); the energy-dispersive X-ray spectroscopy (EDS) analysis was used to determinate the Ca/P molar ratio of the coatings, the degree of adhesion (bonding strength) of coatings was determinate by pull-out test according to ASTM C633, and finally the nanomechanical properties was determinate by nanoindentation. In the results, the HEBM powder processing shows better efficiency in phase distribution, being the 30% (w/w) of BT in HA matrix that promotes the best bonding strength performance and failure type conduct (cohesive-type), on the other hand HEBM powder treatment promotes a slightly greater crystal phase stability and crystal shrank conduct against MSH; the HEBM promotes a better behavior in the nanomechanical properties of (i) adhesive strength, (ii) cohesive/adhesive failure-type, (iii) stiffness, (iv) elastic modulus, and (v) hardness properties.


1999 ◽  
Vol 86 (3) ◽  
pp. 1607-1610 ◽  
Author(s):  
Michael B. Liou ◽  
Shaheen Islam ◽  
D. J. Fatemi ◽  
V. M. Browning ◽  
D. J. Gillespie ◽  
...  

2019 ◽  
Vol 8 (5) ◽  
pp. 4995-5003 ◽  
Author(s):  
J.A. Betancourt-Cantera ◽  
F. Sánchez-De Jesús ◽  
A.M. Bolarín-Miró ◽  
G. Torres-Villaseñor ◽  
L.G. Betancourt-Cantera

Sign in / Sign up

Export Citation Format

Share Document