scholarly journals Conformality and p-isomorphism in finite nilpotent groups

1967 ◽  
Vol 7 (2) ◽  
pp. 165-171 ◽  
Author(s):  
C. D. H. Cooper

This paper discusses the relationship between two equivalence relations on the class of finite nilpotent groups. Two finite groups are conformal if they have the same number of elements of all orders. (Notation: G ≈ H.) This relation is discussed in [4] pp 107–109 where it is shown that conformality does not necessarily imply isomorphism, even if one of the groups is abelian. However, if both groups are abelian the position is much simpler. Finite conformal abelian groups are isomorphic.

2019 ◽  
Vol 22 (3) ◽  
pp. 515-527
Author(s):  
Bret J. Benesh ◽  
Dana C. Ernst ◽  
Nándor Sieben

AbstractWe study an impartial game introduced by Anderson and Harary. The game is played by two players who alternately choose previously-unselected elements of a finite group. The first player who builds a generating set from the jointly-selected elements wins. We determine the nim-numbers of this game for finite groups of the form{T\times H}, whereTis a 2-group andHis a group of odd order. This includes all nilpotent and hence abelian groups.


2010 ◽  
Vol 20 (05) ◽  
pp. 671-688
Author(s):  
UZY HADAD

We give bounds on Kazhdan constants of abelian extensions of (finite) groups. As a corollary, we improved known results of Kazhdan constants for some meta-abelian groups and for the relatively free group in the variety of p-groups of lower p-series of class 2. Furthermore, we calculate Kazhdan constants of the tame automorphism groups of the free nilpotent groups.


1982 ◽  
Vol 25 (4) ◽  
pp. 441-446
Author(s):  
Andrew Pletch

AbstractIn this paper we discuss the relationship between local properties such as freeness and projectivity of a group and the freeness or projectivity of its pro-C-completion. We show that for certain classes, C, of finite groups (e.g. p-groups, nilpotent groups, super-solvable groups) the pro-C-completion of a locally free pro-C-group is a free pro-C-group. We also show that under certain circumstances the converse is also true but we leave open the question, for example, of whether a locally free pro-p-group is free.


Author(s):  
Jiuya Wang

AbstractElementary abelian groups are finite groups in the form of {A=(\mathbb{Z}/p\mathbb{Z})^{r}} for a prime number p. For every integer {\ell>1} and {r>1}, we prove a non-trivial upper bound on the {\ell}-torsion in class groups of every A-extension. Our results are pointwise and unconditional. This establishes the first case where for some Galois group G, the {\ell}-torsion in class groups are bounded non-trivially for every G-extension and every integer {\ell>1}. When r is large enough, the unconditional pointwise bound we obtain also breaks the previously best known bound shown by Ellenberg and Venkatesh under GRH.


2018 ◽  
Vol 17 (08) ◽  
pp. 1850146 ◽  
Author(s):  
Sudip Bera ◽  
A. K. Bhuniya

Given a group [Formula: see text], the enhanced power graph of [Formula: see text], denoted by [Formula: see text], is the graph with vertex set [Formula: see text] and two distinct vertices [Formula: see text] and [Formula: see text] are edge connected in [Formula: see text] if there exists [Formula: see text] such that [Formula: see text] and [Formula: see text] for some [Formula: see text]. Here, we show that the graph [Formula: see text] is complete if and only if [Formula: see text] is cyclic; and [Formula: see text] is Eulerian if and only if [Formula: see text] is odd. We characterize all abelian groups and all non-abelian [Formula: see text]-groups [Formula: see text] such that [Formula: see text] is dominatable. Besides, we show that there is a one-to-one correspondence between the maximal cliques in [Formula: see text] and the maximal cyclic subgroups of [Formula: see text].


1973 ◽  
Vol 16 (3) ◽  
pp. 405-415
Author(s):  
Gerard Elie Cohen

An inverse limit of finite groups has been called in the literature a pro-finite group and we have extensive studies of profinite groups from the cohomological point of view by J. P. Serre. The general theory of non-abelian modules has not yet been developed and therefore we consider a generalization of profinite abelian groups. We study inverse systems of discrete finite length R-modules. Profinite modules are inverse limits of discrete finite length R-modules with the inverse limit topology.


1993 ◽  
Vol 119 (3) ◽  
pp. 697-697
Author(s):  
Charles Cassidy ◽  
Guy Laberge

1996 ◽  
Vol 39 (3) ◽  
pp. 294-307 ◽  
Author(s):  
Goansu Kim

AbstractWe show that polygonal products of polycyclic-by-finite groups amalgamating central cyclic subgroups, with trivial intersections, are conjugacy separable. Thus polygonal products of finitely generated abelian groups amalgamating cyclic subgroups, with trivial intersections, are conjugacy separable. As a corollary of this, we obtain that the group A1 *〈a1〉A2 *〈a2〉 • • • *〈am-1〉Am is conjugacy separable for the abelian groups Ai.


2019 ◽  
Vol 19 (04) ◽  
pp. 2050062 ◽  
Author(s):  
Samir Zahirović ◽  
Ivica Bošnjak ◽  
Rozália Madarász

The enhanced power graph [Formula: see text] of a group [Formula: see text] is the graph with vertex set [Formula: see text] such that two vertices [Formula: see text] and [Formula: see text] are adjacent if they are contained in the same cyclic subgroup. We prove that finite groups with isomorphic enhanced power graphs have isomorphic directed power graphs. We show that any isomorphism between undirected power graph of finite groups is an isomorphism between enhanced power graphs of these groups, and we find all finite groups [Formula: see text] for which [Formula: see text] is abelian, all finite groups [Formula: see text] with [Formula: see text] being prime power, and all finite groups [Formula: see text] with [Formula: see text] being square-free. Also, we describe enhanced power graphs of finite abelian groups. Finally, we give a characterization of finite nilpotent groups whose enhanced power graphs are perfect, and we present a sufficient condition for a finite group to have weakly perfect enhanced power graph.


Sign in / Sign up

Export Citation Format

Share Document