Pointwise bound for ℓ-torsion in class groups: Elementary abelian extensions

Author(s):  
Jiuya Wang

AbstractElementary abelian groups are finite groups in the form of {A=(\mathbb{Z}/p\mathbb{Z})^{r}} for a prime number p. For every integer {\ell>1} and {r>1}, we prove a non-trivial upper bound on the {\ell}-torsion in class groups of every A-extension. Our results are pointwise and unconditional. This establishes the first case where for some Galois group G, the {\ell}-torsion in class groups are bounded non-trivially for every G-extension and every integer {\ell>1}. When r is large enough, the unconditional pointwise bound we obtain also breaks the previously best known bound shown by Ellenberg and Venkatesh under GRH.

2010 ◽  
Vol 20 (05) ◽  
pp. 671-688
Author(s):  
UZY HADAD

We give bounds on Kazhdan constants of abelian extensions of (finite) groups. As a corollary, we improved known results of Kazhdan constants for some meta-abelian groups and for the relatively free group in the variety of p-groups of lower p-series of class 2. Furthermore, we calculate Kazhdan constants of the tame automorphism groups of the free nilpotent groups.


2015 ◽  
Vol 11 (04) ◽  
pp. 1177-1215 ◽  
Author(s):  
Abdelmalek Azizi ◽  
Abdelkader Zekhnini ◽  
Mohammed Taous ◽  
Daniel C. Mayer

Let p1 ≡ p2≡ -q ≡ 1 (mod 4) be different primes such that [Formula: see text]. Put d = p1p2q and [Formula: see text], then the bicyclic biquadratic field [Formula: see text] has an elementary abelian 2-class group, Cl2(𝕜), of rank 3. In this paper, we study the principalization of the 2-classes of 𝕜 in its 14 unramified abelian extensions 𝕂j and 𝕃j within [Formula: see text], that is the Hilbert 2-class field of 𝕜. We determine the nilpotency class, the coclass, generators and the structure of the metabelian Galois group [Formula: see text] of the second Hilbert 2-class field [Formula: see text] of 𝕂. Additionally, the abelian type invariants of the groups Cl2(𝕂j) and Cl2(𝕃j) and the length of the 2-class tower of 𝕜 are given.


2018 ◽  
Vol 28 (08) ◽  
pp. 1693-1703
Author(s):  
V. H. Mikaelian

Let [Formula: see text] be a nilpotent [Formula: see text]-group of finite exponent and [Formula: see text] be an abelian [Formula: see text]-group of finite exponent for a given prime number [Formula: see text]. Then the wreath product [Formula: see text] generates the variety [Formula: see text] if and only if the group [Formula: see text] contains a subgroup isomorphic to the direct product [Formula: see text] of countably many copies of the cycle [Formula: see text] of order [Formula: see text]. The obtained theorem continues our previous study of cases when [Formula: see text] holds for some other classes of groups [Formula: see text] and [Formula: see text] (abelian groups, finite groups, etc.).


2011 ◽  
Vol 10 (03) ◽  
pp. 377-389
Author(s):  
CARLA PETRORO ◽  
MARKUS SCHMIDMEIER

Let Λ be a commutative local uniserial ring of length n, p be a generator of the maximal ideal, and k be the radical factor field. The pairs (B, A) where B is a finitely generated Λ-module and A ⊆B a submodule of B such that pmA = 0 form the objects in the category [Formula: see text]. We show that in case m = 2 the categories [Formula: see text] are in fact quite similar to each other: If also Δ is a commutative local uniserial ring of length n and with radical factor field k, then the categories [Formula: see text] and [Formula: see text] are equivalent for certain nilpotent categorical ideals [Formula: see text] and [Formula: see text]. As an application, we recover the known classification of all pairs (B, A) where B is a finitely generated abelian group and A ⊆ B a subgroup of B which is p2-bounded for a given prime number p.


2018 ◽  
Vol 17 (10) ◽  
pp. 1850184 ◽  
Author(s):  
Ramesh Prasad Panda ◽  
K. V. Krishna

The power graph of a group [Formula: see text] is the graph whose vertex set is [Formula: see text] and two distinct vertices are adjacent if one is a power of the other. This paper investigates the minimal separating sets of power graphs of finite groups. For power graphs of finite cyclic groups, certain minimal separating sets are obtained. Consequently, a sharp upper bound for their connectivity is supplied. Further, the components of proper power graphs of [Formula: see text]-groups are studied. In particular, the number of components of that of abelian [Formula: see text]-groups are determined.


2018 ◽  
Vol 167 (02) ◽  
pp. 229-247
Author(s):  
TAKAO SATOH

AbstractIn this paper, we study “the ring of component functions” of SL(2, C)-representations of free abelian groups. This is a subsequent research of our previous work [11] for free groups. We introduce some descending filtration of the ring, and determine the structure of its graded quotients.Then we give two applications. In [30], we constructed the generalized Johnson homomorphisms. We give an upper bound on their images with the graded quotients. The other application is to construct a certain crossed homomorphisms of the automorphism groups of free groups. We show that our crossed homomorphism induces Morita's 1-cocycle defined in [22]. In other words, we give another construction of Morita's 1-cocyle with the SL(2, C)-representations of the free abelian group.


2008 ◽  
Vol 07 (06) ◽  
pp. 735-748 ◽  
Author(s):  
BEHROOZ KHOSRAVI

Let G be a finite group. The prime graph Γ(G) of G is defined as follows. The vertices of Γ(G) are the primes dividing the order of G and two distinct vertices p, q are joined by an edge if there is an element in G of order pq. It is proved that if p > 11 and p ≢ 1 (mod 12), then PSL(2,p) is uniquely determined by its prime graph. Also it is proved that if p > 7 is a prime number and Γ(G) = Γ(PSL(2,p2)), then G ≅ PSL(2,p2) or G ≅ PSL(2,p2).2, the non-split extension of PSL(2,p2) by ℤ2. In this paper as the main result we determine finite groups G such that Γ(G) = Γ(PSL(2,q)), where q = pk. As a consequence of our results we prove that if q = pk, k > 1 is odd and p is an odd prime number, then PSL(2,q) is uniquely determined by its prime graph and so these groups are characterizable by their prime graph.


2018 ◽  
Vol 17 (08) ◽  
pp. 1850146 ◽  
Author(s):  
Sudip Bera ◽  
A. K. Bhuniya

Given a group [Formula: see text], the enhanced power graph of [Formula: see text], denoted by [Formula: see text], is the graph with vertex set [Formula: see text] and two distinct vertices [Formula: see text] and [Formula: see text] are edge connected in [Formula: see text] if there exists [Formula: see text] such that [Formula: see text] and [Formula: see text] for some [Formula: see text]. Here, we show that the graph [Formula: see text] is complete if and only if [Formula: see text] is cyclic; and [Formula: see text] is Eulerian if and only if [Formula: see text] is odd. We characterize all abelian groups and all non-abelian [Formula: see text]-groups [Formula: see text] such that [Formula: see text] is dominatable. Besides, we show that there is a one-to-one correspondence between the maximal cliques in [Formula: see text] and the maximal cyclic subgroups of [Formula: see text].


1973 ◽  
Vol 16 (3) ◽  
pp. 405-415
Author(s):  
Gerard Elie Cohen

An inverse limit of finite groups has been called in the literature a pro-finite group and we have extensive studies of profinite groups from the cohomological point of view by J. P. Serre. The general theory of non-abelian modules has not yet been developed and therefore we consider a generalization of profinite abelian groups. We study inverse systems of discrete finite length R-modules. Profinite modules are inverse limits of discrete finite length R-modules with the inverse limit topology.


2021 ◽  
Vol 7 (1) ◽  
pp. 212-224
Author(s):  
Lingfeng Ao ◽  
◽  
Shuanglin Fei ◽  
Shaofang Hong

<abstract><p>Let $ n\ge 8 $ be an integer and let $ p $ be a prime number satisfying $ \frac{n}{2} &lt; p &lt; n-2 $. In this paper, we prove that the Galois groups of the trinomials</p> <p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ T_{n, p, k}(x): = x^n+n^kp^{(n-1-p)k}x^p+n^kp^{nk}, $\end{document} </tex-math></disp-formula></p> <p><disp-formula> <label/> <tex-math id="FE2"> \begin{document}$ S_{n, p}(x): = x^n+p^{n(n-1-p)}n^px^p+n^pp^{n^2} $\end{document} </tex-math></disp-formula></p> <p>and</p> <p><disp-formula> <label/> <tex-math id="FE3"> \begin{document}$ E_{n, p}(x): = x^n+pnx^{n-p}+pn^2 $\end{document} </tex-math></disp-formula></p> <p>are the full symmetric group $ S_n $ under several conditions. This extends the Cohen-Movahhedi-Salinier theorem on the irreducible trinomials $ f(x) = x^n+ax^s+b $ with integral coefficients.</p></abstract>


Sign in / Sign up

Export Citation Format

Share Document