scholarly journals Subnomality in soluble minimax groups

1974 ◽  
Vol 17 (1) ◽  
pp. 113-128 ◽  
Author(s):  
D. J. McCaughan

A subgroup H of a group G is said to be subnormal in G if there is a finite chain of subgroups, each normal in its successor, connecting H to G. If such chains exist there is one of minimal length; the number of strict inclusions in this chain is called the subnormal index, or defect, of H in G. The rather large class of groups which have an upper bound for the subnormal indices of their subnormal subgroups has been inverstigated to same extent, mainly with a restriction to solublegroups — for instance, in [10] McDougall considered soluble p-groups in this class. Robinson, in [14], restricted his attention to wreath products of nilpotent groups but extended his investigations to the strictly larger class of groups in which the intersection of any family of subnormal subgroups is a subnormal subgroup. These groups are said to have the subnormal intersection property.

1994 ◽  
Vol 36 (2) ◽  
pp. 241-247 ◽  
Author(s):  
A. Ballester-Bolinches ◽  
M. D. Pérez-Ramos

Throughout the paper we consider only finite groups.J. C. Beidleman and H. Smith [3] have proposed the following question: “If G is a group and Ha subnormal subgroup of G containing Φ(G), the Frattini subgroup of G, such that H/Φ(G)is supersoluble, is H necessarily supersoluble? “In this paper, we give not only an affirmative answer to this question but also we see that the above result still holds if supersoluble is replaced by any saturated formation containing the class of all nilpotent groups.


1973 ◽  
Vol 16 (3) ◽  
pp. 324-327 ◽  
Author(s):  
Mark Drukker ◽  
Derek J. S. Robinson ◽  
Ian Stewart

A class of groups forms a (subnormal) coalition class, or is (subnormally) coalescent, if wheneverHandKare subnormal -subgroups of a groupGthen their join <H, K> is also a subnormal -subgroup ofG. Among the known coalition classes are those of finite groups and polycylic groups (Wielandt [15]); groups with maximal condition for subgroups (Baer [1]); finitely generated nilpotent groups (Baer [2]); groups with maximal or minimal condition on subnormal subgroups (Robinson [8], Roseblade [11, 12]); minimax groups (Roseblade, unpublished); and any subjunctive class of finitely generated groups (Roseblade and Stonehewer [13]).


1991 ◽  
Vol 34 (1) ◽  
pp. 113-119 ◽  
Author(s):  
A. W. Mason

It is known that for certain rings R (for example R = ℤ, the ring of rational integers) the group GL2(R) contains subnormal subgroups which have free, non-abelian quotients. When such a subgroup has finite index it follows that every countable group is embeddable in a quotient of GL2(R). (In this case GL2(R) is said to be SQ-universal.) In this note we prove that the existence of subnormal subgroups of GL2(R) with this property is a phenomenon peculiar to “n = 2”.For a large class of rings (which includes all commutative rings) it is shown that, for all , no subnormal subgroup of En(R) has a free, non-abelian quotient, when n≧3. (En(R) is the subgroup of GLn(R) generated by the elementary matrices.) In addition it is proved that, if is an SRt-ring, for some t ≧ 2, then no subnormal subgroup of GLn(R) has a free, non-abelian quotient, when n ≧ max (t, 3). From the above these results are best possible since ℤ is an SR3 ring.


1992 ◽  
Vol 111 (2) ◽  
pp. 273-281 ◽  
Author(s):  
D. A. Chalcraft

AbstractThe number of Seifert circuits in a diagram of a link is well known 9 to be an upper bound for the braid index of the link. The -breadth of the so-called P-polynomial 3 of the link is known 5, 2 to give a lower bound. In this paper we consider a large class of links diagrams, including all diagrams where the interior of every Seifert circuit is empty. We show that either these bounds coincide, or else the upper bound is not sharp, and we obtain a very simple criterion for distinguishing these cases.


1978 ◽  
Vol 30 (01) ◽  
pp. 161-163 ◽  
Author(s):  
Gary R. Greenfield

Let D be a division algebra and let D* denote the multiplicative group of nonzero elements of D. In [3] Herstein and Scott asked whether any subnormal subgroup of D* must be normal in D*. Our purpose here is to show that division algebras over certain p-local fields do not satisfy such a “subnormal property”.


Author(s):  
M. H. Bien ◽  
M. Ramezan-Nassab

In this paper, we study some algebras [Formula: see text] whose unit groups [Formula: see text] or subnormal subgroups of [Formula: see text] are (generalized) Engel. For example, we show that any generalized Engel subnormal subgroup of the multiplicative group of division rings with uncountable centers is central. Some of algebraic structures of Engel subnormal subgroups of the unit groups of skew group algebras over locally finite or torsion groups are also investigated.


2019 ◽  
Vol 53 (3-4) ◽  
pp. 115-123
Author(s):  
Antonio Boccuto ◽  
Arturo Carpi

This paper deals with uncomplete unambiguous automata. In this setting, we investigate the minimal length of uncompletable words. This problem is connected with a well-known conjecture formulated by A. Restivo. We introduce the notion of relatively maximal row for a suitable monoid of matrices. We show that, if M is a monoid of {0, 1}-matrices of dimension n generated by a set S, then there is a matrix of M containing a relatively maximal row which can be expressed as a product of O(n3) matrices of S. As an application, we derive some upper bound to the minimal length of an uncompletable word of an uncomplete unambiguous automaton, in the case that its transformation monoid contains a relatively maximal row which is not maximal. Finally we introduce the maximal row automaton associated with an unambiguous automaton A. It is a deterministic automaton, which is complete if and only if A is. We prove that the minimal length of the uncompletable words of A is polynomially bounded by the number of states of A and the minimal length of the uncompletable words of the associated maximal row automaton.


2012 ◽  
Vol 23 (04) ◽  
pp. 1250040 ◽  
Author(s):  
PATRIK LUNDSTRÖM ◽  
JOHAN ÖINERT

We introduce partially defined dynamical systems defined on a topological space. To each such system we associate a functor s from a category G to Topop and show that it defines what we call a skew category algebra A ⋊σ G. We study the connection between topological freeness of s and, on the one hand, ideal properties of A ⋊σ G and, on the other hand, maximal commutativity of A in A ⋊σ G. In particular, we show that if G is a groupoid and for each e ∈ ob (G) the group of all morphisms e → e is countable and the topological space s(e) is Tychonoff and Baire. Then the following assertions are equivalent: (i) s is topologically free; (ii) A has the ideal intersection property, i.e. if I is a nonzero ideal of A ⋊σ G, then I ∩ A ≠ {0}; (iii) the ring A is a maximal abelian complex subalgebra of A ⋊σ G. Thereby, we generalize a result by Svensson, Silvestrov and de Jeu from the additive group of integers to a large class of groupoids.


2016 ◽  
Vol 95 (1) ◽  
pp. 38-47 ◽  
Author(s):  
FRANCESCO DE GIOVANNI ◽  
MARCO TROMBETTI

A group $G$ is said to have the $T$-property (or to be a $T$-group) if all its subnormal subgroups are normal, that is, if normality in $G$ is a transitive relation. The aim of this paper is to investigate the behaviour of uncountable groups of cardinality $\aleph$ whose proper subgroups of cardinality $\aleph$ have a transitive normality relation. It is proved that such a group $G$ is a $T$-group (and all its subgroups have the same property) provided that $G$ has an ascending subnormal series with abelian factors. Moreover, it is shown that if $G$ is an uncountable soluble group of cardinality $\aleph$ whose proper normal subgroups of cardinality $\aleph$ have the $T$-property, then every subnormal subgroup of $G$ has only finitely many conjugates.


Sign in / Sign up

Export Citation Format

Share Document