scholarly journals GROUP ALGEBRAS WHOSE GROUP OF UNITS IS POWERFUL

2009 ◽  
Vol 87 (3) ◽  
pp. 325-328
Author(s):  
VICTOR BOVDI

AbstractA p-group is called powerful if every commutator is a product of pth powers when p is odd and a product of fourth powers when p=2. In the group algebra of a group G of p-power order over a finite field of characteristic p, the group of normalized units is always a p-group. We prove that it is never powerful except, of course, when G is abelian.

2016 ◽  
Vol 15 (08) ◽  
pp. 1650150 ◽  
Author(s):  
Hongdi Huang ◽  
Yuanlin Li ◽  
Gaohua Tang

A ring with involution ∗ is called ∗-clean if each of its elements is the sum of a unit and a projection (∗-invariant idempotent). In this paper, we consider the group algebras of the dihedral groups [Formula: see text], and the generalized quaternion groups [Formula: see text] with standard involution ∗. For the non-semisimple group algebra case, we characterize the ∗-cleanness of [Formula: see text] with a prime [Formula: see text], and [Formula: see text] with [Formula: see text], where [Formula: see text] is a commutative local ring. For the semisimple group algebra case, we investigate when [Formula: see text] is ∗-clean, where [Formula: see text] is the field of rational numbers [Formula: see text] or a finite field [Formula: see text] and [Formula: see text] or [Formula: see text].


1998 ◽  
Vol 08 (04) ◽  
pp. 467-477 ◽  
Author(s):  
A. Giambruno ◽  
E. Jespers

Let ℚAn be the group algebra of the alternating group over the rationals. By exploiting the theory of Young tableaux, we give an explicit description of the minimal central idempotents of ℚAn. As an application we construct finitely many generators for a subgroup of finite index in the centre of the group of units of ℚAn.


1995 ◽  
Vol 47 (2) ◽  
pp. 274-289
Author(s):  
Victor Bovdi

AbstractLet U(KλG) be the group of units of the infinite twisted group algebra KλG over a field K. We describe the FC-centre ΔU of U(KλG) and give a characterization of the groups G and fields K for which U(KλG) = ΔU. In the case of group algebras we obtain the Cliff-Sehgal-Zassenhaus theorem.


2013 ◽  
Vol 12 (08) ◽  
pp. 1350046
Author(s):  
JIZHU NAN ◽  
LINGLI ZENG

Let F be a finite field and let Sp 2ν(F) be the symplectic group over F. If Sp 2ν(F) acts on the F-vector space F2ν, then it can induce an action on the vector space F2ν ⊕ F2ν, defined by (x, y)A = (xA, yA), ∀ x, y ∈ F2ν, A ∈ Sp 2ν(F). If K is a field with char K ≠ char F, then Sp 2ν(F) also acts on the group algebra K[F2ν ⊕ F2ν]. In this paper, we determine the structures of Sp 2ν(F)-stable ideals of the group algebra K[F2ν ⊕ F2ν] by augmentation ideals, and describe the relations between the invariant ideals of K[F2ν] and the vector invariant ideals of K[F2ν ⊕ F2ν].


2004 ◽  
Vol 77 (2) ◽  
pp. 185-190 ◽  
Author(s):  
A. Bovdi ◽  
L. G. Kovács ◽  
S. Mihovski

AbstractLet p be a prime, a field of pn elements, and G a finite p-group. It is shown here that if G has a quotient whose commutator subgroup is of order p and whose centre has index pk, then the group of normalized units in the group algebra has a conjugacy class of pnk elements. This was first proved by A. Bovdi and C. Polcino Milies for the case k = 2; their argument is now generalized and simplified. It remains an intriguing question whether the cardinality of the smallest noncentral conjugacy class can always be recognized from this test.


2020 ◽  
Vol 109 (1) ◽  
pp. 17-23 ◽  
Author(s):  
V. BOVDI

We present a complete list of groups $G$ and fields $F$ for which: (i) the group of normalized units $V(FG)$ of the group algebra $FG$ is locally nilpotent; (ii) the set of nontrivial nilpotent elements of $FG$ is finite and nonempty, and $V(FG)$ is an Engel group.


2016 ◽  
Vol 101 (2) ◽  
pp. 244-252 ◽  
Author(s):  
M. RAMEZAN-NASSAB

Let $F$ be a field of characteristic $p\geq 0$ and $G$ any group. In this article, the Engel property of the group of units of the group algebra $FG$ is investigated. We show that if $G$ is locally finite, then ${\mathcal{U}}(FG)$ is an Engel group if and only if $G$ is locally nilpotent and $G^{\prime }$ is a $p$-group. Suppose that the set of nilpotent elements of $FG$ is finite. It is also shown that if $G$ is torsion, then ${\mathcal{U}}(FG)$ is an Engel group if and only if $G^{\prime }$ is a finite $p$-group and $FG$ is Lie Engel, if and only if ${\mathcal{U}}(FG)$ is locally nilpotent. If $G$ is nontorsion but $FG$ is semiprime, we show that the Engel property of ${\mathcal{U}}(FG)$ implies that the set of torsion elements of $G$ forms an abelian normal subgroup of $G$.


2006 ◽  
Vol 80 (2) ◽  
pp. 173-178 ◽  
Author(s):  
A. Bovdi

AbstractLet F be a field of characteristic p and G a group containing at least one element of order p. It is proved that the group of units of the group algebra FG is a bounded Engel group if and only if FG is a bounded Engel algebra, and that this is the case if and only if G is nilpotent and has a normal subgroup H such that both the factor group G/H and the commutator subgroup H′ are finite p–groups.


Author(s):  
Meena Sahai ◽  
Sheere Farhat Ansari

In this paper, we establish the structure of the unit group of the group algebra [Formula: see text] where [Formula: see text] is an abelian group of order at most 16 and [Formula: see text] is a finite field of characteristic [Formula: see text] with [Formula: see text] elements.


Sign in / Sign up

Export Citation Format

Share Document