GROUP ALGEBRAS WITH ENGEL UNIT GROUPS

2016 ◽  
Vol 101 (2) ◽  
pp. 244-252 ◽  
Author(s):  
M. RAMEZAN-NASSAB

Let $F$ be a field of characteristic $p\geq 0$ and $G$ any group. In this article, the Engel property of the group of units of the group algebra $FG$ is investigated. We show that if $G$ is locally finite, then ${\mathcal{U}}(FG)$ is an Engel group if and only if $G$ is locally nilpotent and $G^{\prime }$ is a $p$-group. Suppose that the set of nilpotent elements of $FG$ is finite. It is also shown that if $G$ is torsion, then ${\mathcal{U}}(FG)$ is an Engel group if and only if $G^{\prime }$ is a finite $p$-group and $FG$ is Lie Engel, if and only if ${\mathcal{U}}(FG)$ is locally nilpotent. If $G$ is nontorsion but $FG$ is semiprime, we show that the Engel property of ${\mathcal{U}}(FG)$ implies that the set of torsion elements of $G$ forms an abelian normal subgroup of $G$.

2020 ◽  
Vol 109 (1) ◽  
pp. 17-23 ◽  
Author(s):  
V. BOVDI

We present a complete list of groups $G$ and fields $F$ for which: (i) the group of normalized units $V(FG)$ of the group algebra $FG$ is locally nilpotent; (ii) the set of nontrivial nilpotent elements of $FG$ is finite and nonempty, and $V(FG)$ is an Engel group.


2006 ◽  
Vol 80 (2) ◽  
pp. 173-178 ◽  
Author(s):  
A. Bovdi

AbstractLet F be a field of characteristic p and G a group containing at least one element of order p. It is proved that the group of units of the group algebra FG is a bounded Engel group if and only if FG is a bounded Engel algebra, and that this is the case if and only if G is nilpotent and has a normal subgroup H such that both the factor group G/H and the commutator subgroup H′ are finite p–groups.


2016 ◽  
Vol 16 (09) ◽  
pp. 1750170
Author(s):  
M. Ramezan-Nassab

Let [Formula: see text] be a group, [Formula: see text] a field of characteristic [Formula: see text], and [Formula: see text] the unit group of the group algebra [Formula: see text]. In this paper, among other results, we show that if either (1) [Formula: see text] satisfies a non-matrix polynomial identity, or (2) [Formula: see text] is locally finite, [Formula: see text] is infinite and [Formula: see text] is an Engel-by-finite group, then the [Formula: see text]-elements of [Formula: see text] form a (normal) subgroup [Formula: see text] and [Formula: see text] is abelian (here, of course, [Formula: see text] if [Formula: see text]).


2018 ◽  
Vol 30 (1) ◽  
pp. 213-225
Author(s):  
Antonio Giambruno ◽  
Cesar Polcino Milies ◽  
Sudarshan K. Sehgal

Abstract Let G be a group, F a field and FG the corresponding group algebra. We consider an involution on FG which is the linear extension of an involution of G, e.g., {g^{*}=g^{-1}} for {g\in G} . This paper is focused on the characterization of a non-torsion group G provided the group of units {U(FG)} satisfies a {*} -group identity. The torsion case was studied in [7], and when {*} is the classical involution, this problem was solved in the case of symmetric units in [21].


1977 ◽  
Vol 24 (3) ◽  
pp. 339-349 ◽  
Author(s):  
John Hannah

AbstractSuppose KG is a prime nonsingular group algebra with uniform right ideals. We show that G has no nontrivial locally finite normal subgroups. If G is soluble or residually finite, or if K has zero characteristic and G is linear, then the maximal right quotient ring of KG is simple Artinian.


1998 ◽  
Vol 08 (04) ◽  
pp. 467-477 ◽  
Author(s):  
A. Giambruno ◽  
E. Jespers

Let ℚAn be the group algebra of the alternating group over the rationals. By exploiting the theory of Young tableaux, we give an explicit description of the minimal central idempotents of ℚAn. As an application we construct finitely many generators for a subgroup of finite index in the centre of the group of units of ℚAn.


1995 ◽  
Vol 47 (2) ◽  
pp. 274-289
Author(s):  
Victor Bovdi

AbstractLet U(KλG) be the group of units of the infinite twisted group algebra KλG over a field K. We describe the FC-centre ΔU of U(KλG) and give a characterization of the groups G and fields K for which U(KλG) = ΔU. In the case of group algebras we obtain the Cliff-Sehgal-Zassenhaus theorem.


2009 ◽  
Vol 87 (3) ◽  
pp. 325-328
Author(s):  
VICTOR BOVDI

AbstractA p-group is called powerful if every commutator is a product of pth powers when p is odd and a product of fourth powers when p=2. In the group algebra of a group G of p-power order over a finite field of characteristic p, the group of normalized units is always a p-group. We prove that it is never powerful except, of course, when G is abelian.


2010 ◽  
Vol 20 (05) ◽  
pp. 619-660 ◽  
Author(s):  
MANFRED HARTL

Certain subquotients of group algebras are determined as a basis for subsequent computations of relative Fox and dimension subgroups. More precisely, for a group G and N-series [Formula: see text] of G let [Formula: see text], n ≥ 0, denote the filtration of the group algebra R(G) induced by [Formula: see text], and IR(G) its augmentation ideal. For subgroups H of G, left ideals J of R(H) and right H-submodules M of [Formula: see text] the quotients IR(G)J/MJ are studied by homological methods, notably for M = IR(G)IR(H), IR(H)IR(G) + I([H, G])R(G) and [Formula: see text] for a normal subgroup N in G; in the latter case the module IR(G)J/MJ is completely determined for n = 2. The groups [Formula: see text] are studied and explicitly computed for n ≤ 3 in terms of enveloping rings of certain graded Lie rings and of torsion products of abelian groups.


1970 ◽  
Vol 17 (2) ◽  
pp. 165-171 ◽  
Author(s):  
D. A. R. Wallace

Let G be a group and let K be an algebraically closed field of characteristic p>0. The twisted group algebra Kt(G) of G over K is defined as follows: let G have elements a, b, c, … and let Kt(G) be a vector space over K with basis elements , …; a multiplication is defined on this basis of Kt(G) and extended by linearity to Kt(G) by lettingwhere α(x, y) is a non-zero element of K, subject to the condition thatwhich is both necessary and sufficient for associativity. If, for all x, y ∈ G, α{x, y) is the identity of K then Kt(G) is the usual group algebra K(G) of G over K. We denote the Jacobson radical of Kt(G) by JKt(G). We are interested in the relationship between JKt(G) and JKt(H) where H is a normal subgroup of G. In § 2 we show, among other results, that if certain centralising conditions are satisfied and if JK(H) is locally nilpotent then JK(H)K(G) is also locally nilpotent and thus contained in JK(G). It is observed that in the absence of some centralising conditions these conclusions are false. We show, in particular, that if H and G/C(H) are locally finite, C(H) being the centraliser of H, and if G/H has no non-trivial elements of order p, then JK(G) coincides with the locally nilpotent ideal JK(H)K(G). The latter, and probably more significant, part of this paper is concerned with particular types of groups. We introduce the notion of a restricted SN-group and show that if G is such a group and if G has no non-trivial elements of order p then JKt(G) = {0}. It is also shown that if G is polycyclic then JKt(G) is nilpotent.


Sign in / Sign up

Export Citation Format

Share Document