scholarly journals ALGEBRAIC CUNTZ–KRIEGER ALGEBRAS

2019 ◽  
Vol 109 (1) ◽  
pp. 93-111
Author(s):  
ALIREZA NASR-ISFAHANI

We show that a directed graph $E$ is a finite graph with no sinks if and only if, for each commutative unital ring $R$, the Leavitt path algebra $L_{R}(E)$ is isomorphic to an algebraic Cuntz–Krieger algebra if and only if the $C^{\ast }$-algebra $C^{\ast }(E)$ is unital and $\text{rank}(K_{0}(C^{\ast }(E)))=\text{rank}(K_{1}(C^{\ast }(E)))$. Let $k$ be a field and $k^{\times }$ be the group of units of $k$. When $\text{rank}(k^{\times })<\infty$, we show that the Leavitt path algebra $L_{k}(E)$ is isomorphic to an algebraic Cuntz–Krieger algebra if and only if $L_{k}(E)$ is unital and $\text{rank}(K_{1}(L_{k}(E)))=(\text{rank}(k^{\times })+1)\text{rank}(K_{0}(L_{k}(E)))$. We also show that any unital $k$-algebra which is Morita equivalent or stably isomorphic to an algebraic Cuntz–Krieger algebra, is isomorphic to an algebraic Cuntz–Krieger algebra. As a consequence, corners of algebraic Cuntz–Krieger algebras are algebraic Cuntz–Krieger algebras.

Author(s):  
Patrik Lundström ◽  
Johan Öinert

Let [Formula: see text] be a unital ring, let [Formula: see text] be a directed graph and recall that the Leavitt path algebra [Formula: see text] carries a natural [Formula: see text]-gradation. We show that [Formula: see text] is strongly [Formula: see text]-graded if and only if [Formula: see text] is row-finite, has no sink, and satisfies Condition (Y). Our result generalizes a recent result by Clark, Hazrat and Rigby, and the proof is short and self-contained.


2017 ◽  
Vol 96 (2) ◽  
pp. 212-222
Author(s):  
LISA ORLOFF CLARK ◽  
ASTRID AN HUEF ◽  
PAREORANGA LUITEN-APIRANA

We show that every subset of vertices of a directed graph$E$gives a Morita equivalence between a subalgebra and an ideal of the associated Leavitt path algebra. We use this observation to prove an algebraic version of a theorem of Crisp and Gow: certain subgraphs of$E$can be contracted to a new graph$G$such that the Leavitt path algebras of$E$and$G$are Morita equivalent. We provide examples to illustrate how desingularising a graph, and in- or out-delaying of a graph, all fit into this setting.


2019 ◽  
Vol 18 (05) ◽  
pp. 1950086 ◽  
Author(s):  
Müge Kanuni̇ ◽  
Murad Özaydin

We give the necessary and sufficient condition for a separated Cohn–Leavitt path algebra of a finite digraph to have Invariant Basis Number (IBN). As a consequence, separated Cohn path algebras have IBN. We determine the non-stable K-theory of a corner ring in terms of the non-stable K-theory of the ambient ring. We give a necessary condition for a corner algebra of a separated Cohn–Leavitt path algebra of a finite graph to have IBN. We provide Morita equivalent rings which are non-IBN, but are of different types.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Grzegorz Bajor ◽  
Leon van Wyk ◽  
Michał Ziembowski

Abstract Considering prime Leavitt path algebras L K ⁢ ( E ) {L_{K}(E)} , with E being an arbitrary graph with at least two vertices, and K being any field, we construct a class of maximal commutative subalgebras of L K ⁢ ( E ) {L_{K}(E)} such that, for every algebra A from this class, A has zero intersection with the commutative core ℳ K ⁢ ( E ) {\mathcal{M}_{K}(E)} of L K ⁢ ( E ) {L_{K}(E)} defined and studied in [C. Gil Canto and A. Nasr-Isfahani, The commutative core of a Leavitt path algebra, J. Algebra 511 2018, 227–248]. We also give a new proof of the maximality, as a commutative subalgebra, of the commutative core ℳ R ⁢ ( E ) {\mathcal{M}_{R}(E)} of an arbitrary Leavitt path algebra L R ⁢ ( E ) {L_{R}(E)} , where E is an arbitrary graph and R is a commutative unital ring.


2019 ◽  
Vol 19 (09) ◽  
pp. 2050165 ◽  
Author(s):  
Patrik Nystedt ◽  
Johan Öinert

Given a directed graph [Formula: see text] and an associative unital ring [Formula: see text] one may define the Leavitt path algebra with coefficients in [Formula: see text], denoted by [Formula: see text]. For an arbitrary group [Formula: see text], [Formula: see text] can be viewed as a [Formula: see text]-graded ring. In this paper, we show that [Formula: see text] is always nearly epsilon-strongly [Formula: see text]-graded. We also show that if [Formula: see text] is finite, then [Formula: see text] is epsilon-strongly [Formula: see text]-graded. We present a new proof of Hazrat’s characterization of strongly [Formula: see text]-graded Leavitt path algebras, when [Formula: see text] is finite. Moreover, if [Formula: see text] is row-finite and has no source, then we show that [Formula: see text] is strongly [Formula: see text]-graded if and only if [Formula: see text] has no sink. We also use a result concerning Frobenius epsilon-strongly [Formula: see text]-graded rings, where [Formula: see text] is finite, to obtain criteria which ensure that [Formula: see text] is Frobenius over its identity component.


2019 ◽  
Vol 18 (04) ◽  
pp. 1950062
Author(s):  
Ekrem Emre

We give necessary and sufficient conditions on a directed graph [Formula: see text] for which the associated Leavit path algebra [Formula: see text] has at least one full idempotent. Also, we define [Formula: see text] sub-graphs of [Formula: see text] and show that [Formula: see text] has at least one full idempotent if and only if there is a sub-graph [Formula: see text] such that the associated Leavitt path algebra [Formula: see text] has at least one full idempotent.


2012 ◽  
Vol 11 (03) ◽  
pp. 1250044 ◽  
Author(s):  
GENE ABRAMS ◽  
JASON P. BELL ◽  
PINAR COLAK ◽  
KULUMANI M. RANGASWAMY

Let E be any directed graph, and K be any field. For any ideal I of the Leavitt path algebra LK(E) we provide an explicit description of a set of generators for I. This description allows us to classify the two-sided noetherian Leavitt path algebras over arbitrary graphs. This extends similar results previously known only in the row-finite case. We provide a number of additional consequences of this description, including an identification of those Leavitt path algebras for which all two-sided ideals are graded. Finally, we classify the two-sided artinian Leavitt path algebras over arbitrary graphs.


2017 ◽  
Vol 16 (05) ◽  
pp. 1750090 ◽  
Author(s):  
Adel Alahmadi ◽  
Hamed Alsulami

In [9,10] Corrales Garcia, Barquero, Martin Gonzalez, Siles Molina, Solanilla Hernandez described the center of a Leavitt path algebra and characterized it in terms of the underlying graph. We offer a different characterization of the center. In particular, we prove that the Boolean algebra of central idempotents of a Leavitt path algebra of a finite graph is isomorphic to the Boolean algebra of finitary annihilator hereditary subsets of the graph.


Author(s):  
Roozbeh Hazrat ◽  
Lia Vaš

If [Formula: see text] is a directed graph and [Formula: see text] is a field, the Leavitt path algebra [Formula: see text] of [Formula: see text] over [Formula: see text] is naturally graded by the group of integers [Formula: see text] We formulate properties of the graph [Formula: see text] which are equivalent with [Formula: see text] being a crossed product, a skew group ring, or a group ring with respect to this natural grading. We state this main result so that the algebra properties of [Formula: see text] are also characterized in terms of the pre-ordered group properties of the Grothendieck [Formula: see text]-group of [Formula: see text]. If [Formula: see text] has finitely many vertices, we characterize when [Formula: see text] is strongly graded in terms of the properties of [Formula: see text] Our proof also provides an alternative to the known proof of the equivalence [Formula: see text] is strongly graded if and only if [Formula: see text] has no sinks for a finite graph [Formula: see text] We also show that, if unital, the algebra [Formula: see text] is strongly graded and graded unit-regular if and only if [Formula: see text] is a crossed product. In the process of showing the main result, we obtain conditions on a group [Formula: see text] and a [Formula: see text]-graded division ring [Formula: see text] equivalent with the requirements that a [Formula: see text]-graded matrix ring [Formula: see text] over [Formula: see text] is strongly graded, a crossed product, a skew group ring, or a group ring. We characterize these properties also in terms of the action of the group [Formula: see text] on the Grothendieck [Formula: see text]-group [Formula: see text]


2012 ◽  
Vol 88 (2) ◽  
pp. 206-217 ◽  
Author(s):  
HOSSEIN LARKI ◽  
ABDOLHAMID RIAZI

AbstractThe stable rank of Leavitt path algebras of row-finite graphs was computed by Ara and Pardo. In this paper we extend this to an arbitrary directed graph. In part our computation proceeds as for the row-finite case, but we also use knowledge of the row-finite setting by applying the desingularising method due to Drinen and Tomforde. In particular, we characterise purely infinite simple quotients of a Leavitt path algebra.


Sign in / Sign up

Export Citation Format

Share Document