scholarly journals SERRE WEIGHTS FOR LOCALLY REDUCIBLE TWO-DIMENSIONAL GALOIS REPRESENTATIONS

2014 ◽  
Vol 14 (3) ◽  
pp. 639-672 ◽  
Author(s):  
Fred Diamond ◽  
David Savitt

Let $F$ be a totally real field, and $v$ a place of $F$ dividing an odd prime $p$. We study the weight part of Serre’s conjecture for continuous totally odd representations $\overline{{\it\rho}}:G_{F}\rightarrow \text{GL}_{2}(\overline{\mathbb{F}}_{p})$ that are reducible locally at $v$. Let $W$ be the set of predicted Serre weights for the semisimplification of $\overline{{\it\rho}}|_{G_{F_{v}}}$. We prove that, when $\overline{{\it\rho}}|_{G_{F_{v}}}$ is generic, the Serre weights in $W$ for which $\overline{{\it\rho}}$ is modular are exactly the ones that are predicted (assuming that $\overline{{\it\rho}}$ is modular). We also determine precisely which subsets of $W$ arise as predicted weights when $\overline{{\it\rho}}|_{G_{F_{v}}}$ varies with fixed generic semisimplification.

2015 ◽  
Vol 3 ◽  
Author(s):  
TOBY GEE ◽  
TONG LIU ◽  
DAVID SAVITT

AbstractLet $p>2$ be prime. We use purely local methods to determine the possible reductions of certain two-dimensional crystalline representations, which we call pseudo-Barsotti–Tate representations, over arbitrary finite extensions of $\mathbb{Q}_{p}$. As a consequence, we establish (under the usual Taylor–Wiles hypothesis) the weight part of Serre’s conjecture for $\text{GL}(2)$ over arbitrary totally real fields.


2014 ◽  
Vol 150 (8) ◽  
pp. 1235-1346 ◽  
Author(s):  
Patrick B. Allen

AbstractWe prove modularity of some two-dimensional,$\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}2$-adic Galois representations over a totally real field that are nearly ordinary at all places above$2$and that are residually dihedral. We do this by employing the strategy of Skinner and Wiles, using Hida families, together with the$2$-adic patching method of Khare and Wintenberger. As an application we deduce modularity of some elliptic curves over totally real fields that have good ordinary or multiplicative reduction at places above $2$.


2016 ◽  
Vol 152 (7) ◽  
pp. 1476-1488 ◽  
Author(s):  
Ana Caraiani ◽  
Bao V. Le Hung

We compute the image of any choice of complex conjugation on the Galois representations associated to regular algebraic cuspidal automorphic representations and to torsion classes in the cohomology of locally symmetric spaces for $\text{GL}_{n}$ over a totally real field $F$.


2014 ◽  
Vol 2 ◽  
Author(s):  
TOBY GEE ◽  
MARK KISIN

Abstract We prove the Breuil–Mézard conjecture for two-dimensional potentially Barsotti–Tate representations of the absolute Galois group $G_{K}$ , $K$ a finite extension of $\mathbb{Q}_{p}$ , for any $p>2$ (up to the question of determining precise values for the multiplicities that occur). In the case that $K/\mathbb{Q}_{p}$ is unramified, we also determine most of the multiplicities. We then apply these results to the weight part of Serre’s conjecture, proving a variety of results including the Buzzard–Diamond–Jarvis conjecture.


2018 ◽  
Vol 2018 (735) ◽  
pp. 199-224 ◽  
Author(s):  
Thomas Barnet-Lamb ◽  
Toby Gee ◽  
David Geraghty

Abstract We study the weight part of (a generalisation of) Serre’s conjecture for mod l Galois representations associated to automorphic representations on unitary groups of rank n for odd primes l. Given a modular Galois representation, we use automorphy lifting theorems to prove that it is modular in many other weights. We make no assumptions on the ramification or inertial degrees of l. We give an explicit strengthened result when {n=3} and l splits completely in the underlying CM field.


2011 ◽  
Vol 147 (4) ◽  
pp. 1059-1086 ◽  
Author(s):  
Toby Gee ◽  
David Savitt

AbstractWe study the possible weights of an irreducible two-dimensional mod p representation of ${\rm Gal}(\overline {F}/F)$ which is modular in the sense that it comes from an automorphic form on a definite quaternion algebra with centre F which is ramified at all places dividing p, where F is a totally real field. In most cases we determine the precise list of possible weights; in the remaining cases we determine the possible weights up to a short and explicit list of exceptions.


2016 ◽  
Vol 152 (10) ◽  
pp. 2134-2220 ◽  
Author(s):  
Yichao Tian ◽  
Liang Xiao

Let $F$ be a totally real field in which a prime $p$ is unramified. We define the Goren–Oort stratification of the characteristic-$p$ fiber of a quaternionic Shimura variety of maximal level at $p$. We show that each stratum is a $(\mathbb{P}^{1})^{r}$-bundle over other quaternionic Shimura varieties (for an appropriate integer $r$). As an application, we give a necessary condition for the ampleness of a modular line bundle on a quaternionic Shimura variety in characteristic $p$.


2017 ◽  
Vol 153 (9) ◽  
pp. 1769-1778 ◽  
Author(s):  
Fred Diamond ◽  
Payman L Kassaei

We consider mod $p$ Hilbert modular forms associated to a totally real field of degree $d$ in which $p$ is unramified. We prove that every such form arises by multiplication by partial Hasse invariants from one whose weight (a $d$-tuple of integers) lies in a certain cone contained in the set of non-negative weights, answering a question of Andreatta and Goren. The proof is based on properties of the Goren–Oort stratification on mod $p$ Hilbert modular varieties established by Goren and Oort, and Tian and Xiao.


Sign in / Sign up

Export Citation Format

Share Document