absolute galois group
Recently Published Documents


TOTAL DOCUMENTS

81
(FIVE YEARS 15)

H-INDEX

7
(FIVE YEARS 0)

Author(s):  
Alessandro Cobbe

Let [Formula: see text] be a Galois extension of [Formula: see text]-adic number fields and let [Formula: see text] be a de Rham representation of the absolute Galois group [Formula: see text] of [Formula: see text]. In the case [Formula: see text], the equivariant local [Formula: see text]-constant conjecture describes the compatibility of the equivariant Tamagawa number conjecture with the functional equation of Artin [Formula: see text]-functions and it can be formulated as the vanishing of a certain element [Formula: see text] in [Formula: see text]; a similar approach can be followed also in the case of unramified twists [Formula: see text] of [Formula: see text] (see [W. Bley and A. Cobbe, The equivariant local [Formula: see text]-constant conjecture for unramified twists of [Formula: see text], Acta Arith. 178(4) (2017) 313–383; D. Izychev and O. Venjakob, Equivariant epsilon conjecture for 1-dimensional Lubin–Tate groups, J. Théor. Nr. Bordx. 28(2) (2016) 485–521]). One of the main technical difficulties in the computation of [Formula: see text] arises from the so-called cohomological term [Formula: see text], which requires the construction of a bounded complex [Formula: see text] of cohomologically trivial modules which represents [Formula: see text] for a full [Formula: see text]-stable [Formula: see text]-sublattice [Formula: see text] of [Formula: see text]. In this paper, we generalize the construction of [Formula: see text] in Theorem 2 of [W. Bley and A. Cobbe, The equivariant local [Formula: see text]-constant conjecture for unramified twists of [Formula: see text], Acta Arith. 178(4) (2017) 313–383] to the case of a higher dimensional [Formula: see text].


2020 ◽  
pp. 2050127
Author(s):  
Sazzad Ali Biswas ◽  
Ernst-Wilhelm Zink

Heisenberg representations [Formula: see text] of (pro-)finite groups [Formula: see text] are by definition irreducible representations of the two-step nilpotent factor group [Formula: see text] Better known are Heisenberg groups which can be understood as allowing faithful Heisenberg representations. A special feature is that [Formula: see text] will be induced by characters [Formula: see text] of subgroups in multiple ways, where the pairs [Formula: see text] can be interpreted as maximal isotropic pairs. If [Formula: see text] is a [Formula: see text]-adic number field and [Formula: see text] the absolute Galois group then maximal isotropic pairs rewrite as [Formula: see text] where [Formula: see text] is an abelian extension and [Formula: see text] a character. We will consider the extended local Artin-root-number [Formula: see text] for those [Formula: see text] which are essentially tame and express it by a formula not depending on the various maximal isotropic pairs [Formula: see text] for [Formula: see text]


Author(s):  
Claudio Quadrelli

Abstract Let p be a prime number and let ${\mathbb{K}}$ be a field containing a root of 1 of order p. If the absolute Galois group $G_{\mathbb{K}}$ satisfies $\dim\, H^1(G_{\mathbb{K}},\mathbb{F}_p)\lt\infty$ and $\dim\, H^{\,2}(G_{\mathbb{K}},\mathbb{F}_p)=1$, we show that L. Positselski’s and T. Weigel’s Koszulity conjectures are true for ${\mathbb{K}}$. Also, under the above hypothesis, we show that the $\mathbb{F}_p$-cohomology algebra of $G_{\mathbb{K}}$ is the quadratic dual of the graded algebra ${\rm gr}_\bullet\mathbb{F}_p[G_{\mathbb{K}}]$, induced by the powers of the augmentation ideal of the group algebra $\mathbb{F}_p[G_{\mathbb{K}}]$, and these two algebras decompose as products of elementary quadratic algebras. Finally, we propose a refinement of the Koszulity conjectures, analogous to I. Efrat’s elementary type conjecture.


2020 ◽  
Vol 71 (4) ◽  
pp. 1377-1417
Author(s):  
Aristides Kontogeorgis ◽  
Panagiotis Paramantzoglou

Abstract The fundamental group of Fermat and generalized Fermat curves is computed. These curves are Galois ramified covers of the projective line with abelian Galois groups H. We provide a unified study of the action of both cover Galois group H and the absolute Galois group $\mathrm{Gal}(\bar{\mathbb{Q}}/\mathbb{Q})$ on the pro-$\ell$ homology of the curves in study. Also the relation to the pro-$\ell$ Burau representation is investigated.


Author(s):  
Amir Akbary ◽  
Peng-Jie Wong

Let [Formula: see text] be the group of [Formula: see text]-torsion points of a commutative algebraic group [Formula: see text] defined over a number field [Formula: see text]. For a prime [Formula: see text] of [Formula: see text], we let [Formula: see text] be the number of [Formula: see text]-solutions of the system of polynomial equations defining [Formula: see text] when reduced modulo [Formula: see text]. Here, [Formula: see text] is the residue field at [Formula: see text]. Let [Formula: see text] denote the number of primes [Formula: see text] of [Formula: see text] such that [Formula: see text]. We then, for algebraic groups of dimension one, compute the [Formula: see text]th moment limit [Formula: see text] by appealing to the Chebotarev density theorem. We further interpret this limit as the number of orbits of the action of the absolute Galois group of [Formula: see text] on [Formula: see text] copies of [Formula: see text] by an application of Burnside’s Lemma. These concrete examples suggest a possible approach for determining the number of orbits of a group acting on [Formula: see text] copies of a set.


2020 ◽  
pp. 1-22
Author(s):  
Gregorio Baldi ◽  
Giada Grossi

Abstract Let S be a finite set of primes. We prove that a form of finite Galois descent obstruction is the only obstruction to the existence of $\mathbb {Z}_{S}$ -points on integral models of Hilbert modular varieties, extending a result of D. Helm and F. Voloch about modular curves. Let L be a totally real field. Under (a special case of) the absolute Hodge conjecture and a weak Serre’s conjecture for mod $\ell $ representations of the absolute Galois group of L, we prove that the same holds also for the $\mathcal {O}_{L,S}$ -points.


Author(s):  
Ashwin Iyengar

Abstract We study the rigid generic fiber $\mathcal{X}^\square _{\overline \rho }$ of the framed deformation space of the trivial representation $\overline \rho : G_K \to \textrm{GL}_n(k)$ where $k$ is a finite field of characteristic $p>0$ and $G_K$ is the absolute Galois group of a finite extension $K/\textbf{Q}_p$. Under some mild conditions on $K$ we prove that $\mathcal{X}^\square _{\overline \rho }$ is normal. When $p> n$ we describe its irreducible components and show Zariski density of its crystalline points.


Sign in / Sign up

Export Citation Format

Share Document