scholarly journals Large-scale flows and convection at the base of solar convection zone

2006 ◽  
Vol 2 (S239) ◽  
pp. 425-430
Author(s):  
Evgeniy Tikhomolov

AbstractDevelopment of convection in sun's outer shell is caused by reduction of effectiveness of energy transfer by radiation. Traditionally, models of solar convection are considered to be axisymmetric on the scale of solar radius. Such models provide basic understanding of convection under solar conditions. However, interpretation of a number of observable large-scale long-lived solar phenomena requires developing a non-axisymmetric approach. We present such a model in which large-scale non-axisymmetry is caused by large-scale flows such as Rossby waves and vortices. We model flows near the base of the solar convection zone. Anelastic approximation is used, which is valid for flow velocities much smaller than local sound speed. Our three-dimensional numerical simulations show that interaction of convection with large-scale flows leads to the establishment of non-axisymmetric large-scale temperature distribution. The interaction also gives rise to large-scale variations of penetration depth of convective plumes. Generation of the magnetic field by large-scale non-axisymmetric flows can explain such solar phenomena as complexes of activity, active longitudes, drifts of large-scale magnetic fields from equator to the poles, and appearance of distinct rotation periods of magnetic fields at some latitudes. We discuss a possibility of detection of large-scale non-axisymmetric flows and temperature distributions associated with them by the methods of helioseismology.

2012 ◽  
Vol 8 (S294) ◽  
pp. 367-368
Author(s):  
V. V. Pipin

AbstractThe interaction of helical convective motions and differential rotation in the solar convection zone results in turbulent drift of a large-scale magnetic field. We discuss the pumping mechanism and its impact on the solar dynamo.


1991 ◽  
Vol 130 ◽  
pp. 98-100
Author(s):  
P. Pulkkinen ◽  
I. Tuominen ◽  
A. Brandenburg ◽  
Å. Nordlund ◽  
R.F. Stein

AbstractThree-dimensional hydrodynamic simulations are carried out in a rectangular box. The angle between gravity and rotation axis is kept as an external parameter in order to study the latitude-dependence of convection. Special attention is given to the horizontal Reynolds stress and the ∧-effect (Rüdiger, 1989). The results of the simulations are compared with observations and theory and a good agreement is found.


2006 ◽  
Vol 2 (S239) ◽  
pp. 488-493
Author(s):  
Allan Sacha Brun ◽  
Mark S. Miesch ◽  
Juri Toomre

AbstractThree-dimensional global modelling of turbulent convection coupled to rotation and magnetism within the Sun are revealing processes relevant to many stars. We study spherical shells of compressible convection spanning many density scale heights using the MHD version of the anelastic spherical harmonic (ASH) code on massively parallel supercomputers. The simulations reveal that strong magnetic fields can be realized in the bulk of the solar convection zone while still attaining differential rotation profiles that make good contact with helioseismic findings. We find that the Maxwell and Reynolds stresses present in such a turbulent layer play an important role in redistributing angular momentum, with the latter maintaining the differential rotation, aided by baroclinic forcing at the base of the convection zone which is consistent with a tachocline there. The dynamo processes generate strong non-axisymmetric and intermittent fields and weak mean (axisymmetric) fields, but do not possess a regular cyclic magnetism. The explicit inclusion of penetrative convection into the tachocline below is modifying such behavior, serving to build strong toroidal magnetic fields there that may yield more prominent mean fields that have the potential of erupting upward.


2008 ◽  
Vol 144 (1-4) ◽  
pp. 151-173 ◽  
Author(s):  
Allan Sacha Brun ◽  
Matthias Rempel

Sign in / Sign up

Export Citation Format

Share Document