solar convection zone
Recently Published Documents


TOTAL DOCUMENTS

220
(FIVE YEARS 8)

H-INDEX

36
(FIVE YEARS 1)

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Yuhong Fan

AbstractIt has been a prevailing picture that active regions on the solar surface originate from a strong toroidal magnetic field stored in the overshoot region at the base of the solar convection zone, generated by a deep seated solar dynamo mechanism. This article reviews the studies in regard to how the toroidal magnetic field can destabilize and rise through the convection zone to form the observed solar active regions at the surface. Furthermore, new results from the global simulations of the convective dynamos, and from the near-surface layer simulations of active region formation, together with helioseismic investigations of the pre-emergence active regions, are calling into question the picture of active regions as buoyantly rising flux tubes originating from the bottom of the convection zone. This article also gives a review on these new developments.


2020 ◽  
Vol 636 ◽  
pp. A7
Author(s):  
R. H. Cameron ◽  
M. Schüssler

The polarity of the toroidal magnetic field in the solar convection zone periodically reverses in the course of the 11/22-year solar cycle. Among the various processes that contribute to the removal of “old-polarity” toroidal magnetic flux is the emergence of flux loops forming bipolar regions at the solar surface. We quantify the loss of subsurface net toroidal flux by this process. To this end, we determine the contribution of an individual emerging bipolar loop and show that it is unaffected by surface flux transport after emergence. Together with the linearity of the diffusion process this means that the total flux loss can be obtained by adding the contributions of all emerging bipolar magnetic regions. The resulting total loss rate of net toroidal flux amounts to 1.3 × 1015 Mx s−1 during activity maxima and 6.1 × 1014 Mx s−1 during activity minima, to which ephemeral regions contribute about 90 and 97%, respectively. This rate is consistent with the observationally inferred loss rate of toroidal flux into interplanetary space and corresponds to a decay time of the subsurface toroidal flux of about 12 years, also consistent with a simple estimate based on turbulent diffusivity. Consequently, toroidal flux loss by flux emergence is a relevant contribution to the budget of net toroidal flux in the solar convection zone. The consistency between the toroidal flux loss rate due to flux emergence and what is expected from turbulent diffusion, and the similarity between the corresponding decay time and the length of the solar cycle are important constraints for understanding the solar cycle and the Sun’s internal dynamics.


2019 ◽  
Vol 5 (1) ◽  
pp. eaau2307 ◽  
Author(s):  
H. Hotta ◽  
H. Iijima ◽  
K. Kusano

The solar convection zone is filled with turbulent convection in highly stratified plasma. Several theoretical and observational studies suggest that the numerical calculations overestimate the convection velocity. Since all deep convection zone calculations exclude the solar surface due to substantial temporal and spatial scale separations, the solar surface, which drives the thermal convection with efficient radiative cooling, has been thought to be the key to solve this discrepancy. Thanks to the recent development in massive supercomputers, we are successful in performing the comprehensive calculation covering the whole solar convection zone. We compare the results with and without the solar surface in the local domain and without the surface in the full sphere. The calculations do not include the rotation and the magnetic field. The surface region has an unexpectedly weak influence on the deep convection zone. We find that just including the solar surface cannot solve the problem.


2018 ◽  
Vol 25 (9) ◽  
pp. 090702 ◽  
Author(s):  
Yun Yang ◽  
Xue-Shang Feng ◽  
Chao-Wei Jiang ◽  
Ward B. Manchester

Sign in / Sign up

Export Citation Format

Share Document