scholarly journals Star-forming regions in the intragroup medium of compact groups of galaxies

2009 ◽  
Vol 5 (S262) ◽  
pp. 440-441
Author(s):  
S. Torres-Flores ◽  
C. Mendes de Oliveira ◽  
D. F. de Mello ◽  
P. Amram ◽  
H. Plana ◽  
...  

AbstractWe present the results of a multiwavelength campaign searching for young objects in the intragroup medium of seven compact groups of galaxies: HCG 2, 7, 22, 23, 92, 100 and NGC 92. We used Fabry-Perot velocity fields and rotation curves together with GALEX NUV and FUV images, optical R-band and HI maps to evaluate the stage of interaction of each group. We conclude that groups (i) HCG 7 and HCG 23 are in an early stage of interaction, (ii) HCG 2 and HCG 22 are mildly interacting, and (iii) HCG 92, HCG 100 and NGC 92 are in a late stage of evolution. Evolved groups have a population of young objects in their intragroup medium while no such population is found within the less evolved groups. We also report the discovery of a tidal dwarf galaxy candidate in the tail of NGC 92. These three groups, besides containing galaxies which have peculiar velocity fields, also show extended HI tails. Our results indicate that the advanced stage of evolution of a group together with the presence of intragroup HI clouds may lead to star formation in the intragroup medium.

2018 ◽  
Vol 614 ◽  
pp. A130 ◽  
Author(s):  
K. George ◽  
P Joseph ◽  
P. Côté ◽  
S. K. Ghosh ◽  
J. B. Hutchings ◽  
...  

Context. The tidal tails of post-merger galaxies exhibit ongoing star formation far from their disks. The study of such systems can be useful for our understanding of gas condensation in diverse environments. Aims. The ongoing star formation in the tidal tails of post-merger galaxies can be directly studied from ultraviolet (UV) imaging observations. Methods. The post merger galaxy NGC7252 (“Atoms-for-Peace” galaxy) is observed with the Astrosat UV imaging telescope (UVIT) in broadband NUV and FUV filters to isolate the star-forming regions in the tidal tails and study the spatial variation in star formation rates. Results. Based on ultraviolet imaging observations, we discuss star-forming regions of ages <200 Myr in the tidal tails. We measure star formation rates in these regions and in the main body of the galaxy. The integrated star formation rate (SFR) of NGC7252 (i.e., that in the galaxy and tidal tails combined) without correcting for extinction is found to be 0.81 ± 0.01 M⊙ yr−1. We show that the integrated SFR can change by an order of magnitude if the extinction correction used in SFR derived from other proxies are taken into consideration. The star formation rates in the associated tidal dwarf galaxies (NGC7252E, SFR = 0.02 M⊙ yr−1 and NGC7252NW, SFR = 0.03 M⊙ yr−1) are typical of dwarf galaxies in the local Universe. The spatial resolution of the UV images reveals a gradient in star formation within the tidal dwarf galaxy. The star formation rates show a dependence on the distance from the centre of the galaxy. This can be due to the different initial conditions responsible for the triggering of star formation in the gas reservoir that was expelled during the recent merger in NGC7252.


2019 ◽  
Vol 485 (4) ◽  
pp. 5411-5422 ◽  
Author(s):  
M Arabsalmani ◽  
S Roychowdhury ◽  
T K Starkenburg ◽  
L Christensen ◽  
E Le Floc’h ◽  
...  

ABSTRACT We report Giant Metrewave Radio Telescope (GMRT), Very Large Telescope (VLT), and Spitzer Space Telescope observations of ESO 184−G82, the host galaxy of GRB 980425/SN 1998bw, that yield evidence of a companion dwarf galaxy at a projected distance of 13 kpc. The companion, hereafter GALJ193510-524947, is a gas-rich, star-forming galaxy with a star formation rate of $\rm 0.004\, M_{\odot }\, yr^{-1}$, a gas mass of $10^{7.1\pm 0.1} \, \mathrm{M}_{\odot}$, and a stellar mass of $10^{7.0\pm 0.3} \, \mathrm{M}_{\odot}$. The interaction between ESO 184−G82 and GALJ193510-524947 is evident from the extended gaseous structure between the two galaxies in the GMRT H i 21 cm map. We find a ring of high column density H i gas, passing through the actively star-forming regions of ESO 184−G82 and the GRB location. This ring lends support to the picture in which ESO 184−G82 is interacting with GALJ193510-524947. The massive stars in GALJ193510-524947 have similar ages to those in star-forming regions in ESO 184−G82, also suggesting that the interaction may have triggered star formation in both galaxies. The gas and star formation properties of ESO 184−G82 favour a head-on collision with GALJ193510-524947 rather than a classical tidal interaction. We perform state-of-the-art simulations of dwarf–dwarf mergers and confirm that the observed properties of ESO 184−G82 can be reproduced by collision with a small companion galaxy. This is a very clear case of interaction in a gamma-ray burst host galaxy and of interaction-driven star formation giving rise to a gamma-ray burst in a dense environment.


2004 ◽  
Vol 217 ◽  
pp. 566-567 ◽  
Author(s):  
Philippe Amram ◽  
Claudia Mendes de Oliveira ◽  
Henri Plana ◽  
Chantal Balkowski

The detailed study of the internal kinematics of tidal dwarf galaxy (TDG) candidates detected in optical and/or HI observations is most important to address the question about their origins. We are conducting a program to measure the kinematics of TDG candidates in compact groups using a Fabry-Perot instrument which allows us to study the 2-D velocity maps of the objects with high spatial and spectral resolutions. Our main goal is to select TDG candidates which have kinematics independent of the possible parent galaxies. In this paper, we describe our results for Stephan's quintet (SQ) and HCG 31. We find that the dynamical masses of the TDG candidates in SQ range from 108 up to 1010M⊙. Two objects to the E and S of HCG 31 A+C present counterrotating patterns with amplitudes of 30 and 40 km s−1. Region F, which was previously thought to be the best example of TDG presents no rotation.


2009 ◽  
Vol 5 (S266) ◽  
pp. 538-538
Author(s):  
S. Schmeja ◽  
D. A. Gouliermis ◽  
R. S. Klessen ◽  
W. J. G. de Blok ◽  
F. Walter

AbstractStar formation appears to be clumped into a hierarchy of structures, from giant molecular clouds down to individual cores and clusters, which are often hierarchical themselves, showing significant substructure. This has been demonstrated for our Galaxy through the application of sophisticated statistical methods, in particular the nearest-neighbour density and the minimum spanning tree (MST), to different star-forming regions. Here we present our analysis of clustered star formation as demonstrated through the detection of structures of young stellar populations in the dwarf star-forming galaxy NGC 6822.


2020 ◽  
Vol 492 (2) ◽  
pp. 2818-2827 ◽  
Author(s):  
Alessandro Lupi ◽  
Stefano Bovino

ABSTRACT Current galaxy observations suggest that a roughly linear correlation exists between the [C ii] emission and the star formation rate, either as spatially resolved or integrated quantities. Observationally, this correlation seems to be independent of metallicity, but the very large scatter does not allow to properly assess whether this is true. On the other hand, theoretical models tend to suggest a metallicity dependence of the correlation. In this study, we investigate the metallicity evolution of the correlation via a high-resolution zoom-in cosmological simulation of a dwarf galaxy employing state-of-the-art sub-grid modelling for gas cooling, star formation, and stellar feedback, and that self-consistently evolves the abundances of metal elements out of equilibrium. Our results suggest that the correlation should evolve with metallicity, in agreement with theoretical predictions, but also that this evolution can be hardly detected in observations, because of the large scatter. We also find that most of the [C ii] emission is associated with neutral gas at low-intermediate densities, whereas the highest emissivity is produced by the densest regions around star-forming regions.


2000 ◽  
Vol 174 ◽  
pp. 60-69 ◽  
Author(s):  
C. Mendes de Oliveira ◽  
P. Amram

AbstractWe describe a long-term program based on Fabry-Perot Hα velocity field data of compact groups taken at the ESO and the CFH 3.6m telescopes. The main goals of our project are: 1) determine the evolutionary stages of the studied groups, 2) search for tidal dwarf galaxy candidates in interacting systems and 3) in combination with photometry available in the literature, determine the Tully-Fisher relation for the group galaxies. In this paper we summarize all the Hα Fabry-Perot data we have obtained to date and present a preliminary discussion of point 1).The sample of 18 systems (with 64 galaxies) studied here contain groups at a variety of dynamical stages: from a false group that is in fact one single irregular galaxy with several star-forming blobs (e.g. HCG 18) to a group whose members are strongly interacting and possibly forming tidal dwarf galaxies (e.g. HCG 92) to a group in the final process of merging (e.g. HCG 31). A companion paper (Amram and Mendes de Oliveira, 2000) shows examples of galaxy velocity fields for groups in different dynamical stages.


2020 ◽  
Vol 634 ◽  
pp. A26 ◽  
Author(s):  
L. S. Pilyugin ◽  
E. K. Grebel ◽  
I. A. Zinchenko ◽  
J. M. Vílchez ◽  
F. Sakhibov ◽  
...  

We derive the photometric, kinematic, and abundance characteristics of 18 star-forming MaNGA galaxies with fairly regular velocity fields and surface brightness distributions and with a large offset between the measured position angles of the major kinematic and photometric axes, ΔPA ≳ 20°. The aim is to examine if there is any other distinctive characteristic common to these galaxies. We found morphological signs of interaction in some (in 11 out of 18) but not in all galaxies. The observed velocity fields show a large variety; the maps of the isovelocities vary from an hourglass-like appearance to a set of straight lines. The position angles of the major kinematic axes of the stellar and gas rotations are close to each other. The values of the central oxygen abundance, radial abundance gradient, and star formation rate are distributed within the intervals defined by galaxies with small (no) ΔPA of similar mass. Thus, we do not find any specific characteristic common to all galaxies with large ΔPA. Instead, the properties of these galaxies are similar to those of galaxies with small (no) ΔPA. This suggests that either the reason responsible for the large ΔPA does not influence other characteristics or the galaxies with large ΔPA do not share a common origin, they can, instead, originate through different channels.


2020 ◽  
Vol 499 (1) ◽  
pp. 668-680
Author(s):  
Alejandro González-Samaniego ◽  
Enrique Vazquez-Semadeni

ABSTRACT We use two hydrodynamical simulations (with and without photoionizing feedback) of the self-consistent evolution of molecular clouds (MCs) undergoing global hierarchical collapse (GHC), to study the effect of the feedback on the structural and kinematic properties of the gas and the stellar clusters formed in the clouds. During this early stage, the evolution of the two simulations is very similar (implying that the feedback from low-mass stars does not affect the cloud-scale evolution significantly) and the star-forming region accretes faster than it can convert gas into stars, causing the instantaneous measured star formation efficiency (SFE) to remain low even in the absence of significant feedback. Afterwards, the ionizing feedback first destroys the filamentary supply to star-forming hubs and ultimately removes the gas from it, thus first reducing the star formation (SF) and finally halting it. The ionizing feedback also affects the initial kinematics and spatial distribution of the forming stars because the gas being dispersed continues to form stars, which inherit its motion. In the non-feedback simulation, the groups remain highly compact and do not mix, while in the run with feedback, the gas dispersal causes each group to expand, and the cluster expansion thus consists of the combined expansion of the groups. Most secondary star-forming sites around the main hub are also present in the non-feedback run, implying a primordial rather than triggered nature. We do find one example of a peripheral star-forming site that appears only in the feedback run, thus having a triggered origin. However, this appears to be the exception rather than the rule, although this may be an artefact of our simplified radiative transfer scheme.


2016 ◽  
Vol 11 (S321) ◽  
pp. 214-216
Author(s):  
Linda C. Watson

AbstractWe found that star-forming regions in extended ultraviolet (XUV) disks are generally consistent with the molecular-hydrogen Kennicutt-Schmidt law that applies within the inner, optical disk. This is true for star formation rates based on Hα + 24 μm data or FUV + 24 μm data. We estimated that the star-forming regions have ages of 1 − 7 Myr and propose that the presence or absence of molecular gas provides an additional “clock” that may help distinguish between aging and stochasticity as the explanation for the low Hα-to-FUV flux ratios in XUV disks. This contribution is a summary of the work originally presented in Watson et al. (2016).


2020 ◽  
Vol 644 ◽  
pp. A34
Author(s):  
G. Sabatini ◽  
S. Bovino ◽  
A. Giannetti ◽  
F. Wyrowski ◽  
M. A. Órdenes ◽  
...  

Context. Deuteration has been suggested to be a reliable chemical clock of star-forming regions due to its strong dependence on density and temperature changes during cloud contraction. In particular, the H3+ isotopologues (e.g. ortho-H2D+) seem to act as good proxies of the evolutionary stages of the star formation process. While this has been widely explored in low-mass star-forming regions, in the high-mass counterparts only a few studies have been pursued, and the reliability of deuteration as a chemical clock remains inconclusive. Aims. We present a large sample of o-H2D+ observations in high-mass star-forming regions and discuss possible empirical correlations with relevant physical quantities to assess its role as a chronometer of star-forming regions through different evolutionary stages. Methods. APEX observations of the ground-state transition of o-H2D+ were analysed in a large sample of high-mass clumps selected from the ATLASGAL survey at different evolutionary stages. Column densities and beam-averaged abundances of o-H2D+ with respect to H2, X(o-H2D+), were obtained by modelling the spectra under the assumption of local thermodynamic equilibrium. Results. We detect 16 sources in o-H2D+ and find clear correlations between X(o-H2D+) and the clump bolometric luminosity and the dust temperature, while only a mild correlation is found with the CO-depletion factor. In addition, we see a clear correlation with the luminosity-to-mass ratio, which is known to trace the evolution of the star formation process. This would indicate that the deuterated forms of H3+ are more abundant in the very early stages of the star formation process and that deuteration is influenced by the time evolution of the clumps. In this respect, our findings would suggest that the X(o-H2D+) abundance is mainly affected by the thermal changes rather than density changes in the gas. We have employed these findings together with observations of H13CO+, DCO+, and C17O to provide an estimate of the cosmic-ray ionisation rate in a sub-sample of eight clumps based on recent analytical work. Conclusions. Our study presents the largest sample of o-H2D+ in star-forming regions to date. The results confirm that the deuteration process is strongly affected by temperature and suggests that o-H2D+ can be considered a reliable chemical clock during the star formation processes, as proved by its strong temporal dependence.


Sign in / Sign up

Export Citation Format

Share Document