hydrodynamical simulations
Recently Published Documents


TOTAL DOCUMENTS

701
(FIVE YEARS 296)

H-INDEX

45
(FIVE YEARS 13)

2021 ◽  
Vol 922 (2) ◽  
pp. 254
Author(s):  
Gerald Cecil ◽  
Alexander Y. Wagner ◽  
Joss Bland-Hawthorn ◽  
Geoffrey V. Bicknell ◽  
Dipanjan Mukherjee

Abstract MeerKAT radio continuum and XMM-Newton X-ray images have recently revealed a spectacular bipolar channel at the Galactic Center that spans several degrees (∼0.5 kpc). An intermittent jet likely formed this channel and is consistent with earlier evidence of a sustained, Seyfert-level outburst fueled by black hole accretion onto Sgr A* several Myr ago. Therefore, to trace a now weak jet that perhaps penetrated, deflected, and percolated along multiple paths through the interstellar medium, relevant interactions are identified and quantified in archival X-ray images, Hubble Space Telescope Paschen α images and Atacama Large Millimeter/submillimeter Array millimeter-wave spectra, and new SOAR telescope IR spectra. Hydrodynamical simulations are used to show how a nuclear jet can explain these structures and inflate the ROSAT/eROSITA X-ray and Fermi γ-ray bubbles that extend ± 75° from the Galactic plane. Thus, our Galactic outflow has features in common with energetic, jet-driven structures in the prototypical Seyfert galaxy NGC 1068.


2021 ◽  
Vol 923 (1) ◽  
pp. 100
Author(s):  
Brian D. Metzger ◽  
Yossef Zenati ◽  
Laura Chomiuk ◽  
Ken J. Shen ◽  
Jay Strader

Abstract We explore the observational appearance of the merger of a low-mass star with a white dwarf (WD) binary companion. We are motivated by recent work finding that multiple tensions between the observed properties of cataclysmic variables (CVs) and standard evolution models are resolved if a large fraction of CV binaries merge as a result of unstable mass transfer. Tidal disruption of the secondary forms a geometrically thick disk around the WD, which subsequently accretes at highly super-Eddington rates. Analytic estimates and numerical hydrodynamical simulations reveal that outflows from the accretion flow unbind a large fraction ≳90% of the secondary at velocities ∼500–1000 km s−1 within days of the merger. Hydrogen recombination in the expanding ejecta powers optical transient emission lasting about a month with a luminosity ≳1038 erg s−1, similar to slow classical novae and luminous red novae from ordinary stellar mergers. Over longer timescales the mass accreted by the WD undergoes hydrogen shell burning, inflating the remnant into a giant of luminosity ∼300–5000 L ⊙, effective temperature T eff ≈ 3000 K, and lifetime ∼104–105 yr. We predict that ∼103–104 Milky Way giants are CV merger products, potentially distinguishable by atypical surface abundances. We explore whether any Galactic historical slow classical novae are masquerading CV mergers by identifying four such post-nova systems with potential giant counterparts for which a CV merger origin cannot be ruled out. We address whether the historical transient CK Vul and its gaseous/dusty nebula resulted from a CV merger.


2021 ◽  
Vol 923 (1) ◽  
pp. L18
Author(s):  
Alessia Franchini ◽  
Rebecca G. Martin

Abstract Be star X-ray binaries are transient systems that show two different types of outbursts. Type I outbursts occur each orbital period while type II outbursts have a period and duration that are not related to any periodicity of the binary system. Type II outbursts may be caused by mass transfer to the neutron star from a highly eccentric Be star disk. A sufficiently misaligned Be star decretion disk undergoes secular Von Zeipel–Lidov–Kozai (ZLK) oscillations of eccentricity and inclination. Observations show that in some systems the type II outbursts come in pairs with the second being of lower luminosity. We use numerical hydrodynamical simulations to explore the dynamics of the highly misaligned disk that forms around the neutron star as a consequence of mass transfer from the Be star disk. We show that the neutron star disk may also be ZLK unstable and that the eccentricity growth leads to an enhancement in the accretion rate onto the neutron star that lasts for several orbital periods, resembling a type II outburst. We suggest that in a type II outburst pair, the first outburst is caused by mass transfer from the eccentric Be star disk while the second and smaller outburst is caused by the eccentric neutron star disk. We find that the timescale between outbursts in a pair may be compatible with the observed estimates.


2021 ◽  
Vol 923 (1) ◽  
pp. 25
Author(s):  
S. K. Betti ◽  
R. Gutermuth ◽  
S. Offner ◽  
G. Wilson ◽  
A. Sokol ◽  
...  

Abstract We use hydrodynamical simulations of star-forming gas with stellar feedback and sink particles—proxies for young stellar objects (YSOs)—to produce and analyze synthetic 1.1 mm continuum observations at different distances (150–1000 pc) and ages (0.49–1.27 Myr). We characterize how the inferred core properties, including mass, size, and clustering with respect to diffuse natal gas structure, change with distance, cloud evolution, and the presence of YSOs. We find that atmospheric filtering and core segmentation treatments have distance-dependent impacts on the resulting core properties for d < 300 pc and 500 pc, respectively, which dominate over evolutionary differences. Concentrating on synthetic observations at further distances (650–1000 pc), we find a growing separation between the inferred sizes and masses of cores with and without YSOs in the simulations, which is not seen in recent observations of the Monoceros R2 (Mon R2) cloud at 860 pc. We find that the synthetic cores cluster in smaller groups, and that their mass densities are correlated with gas column density over a much narrower range, than those in the Mon R2 observations. Such differences limit the applicability of the evolutionary predictions we report here, but will motivate our future efforts to adapt our synthetic observation and analysis framework to next generation simulations, such as Star Formation in Gaseous Environments (STARFORGE). These predictions and systematic characterizations will help to guide the analysis of cores on the upcoming TolTEC Clouds to Cores Legacy Survey on the Large Millimeter Telescope Alfonso Serrano.


2021 ◽  
Vol 923 (1) ◽  
pp. 41
Author(s):  
Shing-Chi Leung ◽  
Samantha Wu ◽  
Jim Fuller

Abstract The discovery of rapidly rising and fading supernovae powered by circumstellar interaction has suggested the pre-supernova mass eruption phase as a critical phenomenon in massive star evolution. It is important to understand the mass and radial extent of the circumstellar medium (CSM) from theoretically predicted mass ejection mechanisms. In this work, we study the wave heating process in massive hydrogen-poor stars, running a suite of stellar models in order to predict the wave energy and pre-explosion timescale of surface energy deposition. We survey stellar models with main-sequence progenitor masses from 20–70 M ⊙ and metallicity from 0.002–0.02. Most of these models predict that less than ∼1047 erg is deposited in the envelope, with the majority of the energy deposited in the last week of stellar evolution. This translates to CSM masses less than ∼10−2 M ⊙ that extend to less than ∼1014 cm, too small to greatly impact the light curves or spectra of the subsequent supernovae, except perhaps during the shock breakout phase. However, a few models predict somewhat higher wave energy fluxes, for which we perform hydrodynamical simulations of the mass ejection process. Radiative transfer simulations of the subsequent supernovae predict a bright but brief shock-cooling phase that could be detected in some Type Ib/c supernovae if they are discovered within a couple days of explosion.


2021 ◽  
Vol 922 (2) ◽  
pp. 243
Author(s):  
N. C. Drewes ◽  
C. J. Nixon

Abstract Accretion disks around black holes can become warped by Lense–Thirring precession. When the disk viscosity is sufficiently small, such that the warp propagates as a wave, then steady-state solutions to the linearized fluid equations exhibit an oscillatory radial profile of the disk tilt angle. Here we show, for the first time, that these solutions are in good agreement with three-dimensional hydrodynamical simulations, in which the viscosity is isotropic and measured to be small compared to the disk angular semi-thickness, and in the case that the disk tilt—and thus the warp amplitude—remains small. We show, using both the linearized fluid equations and hydrodynamical simulations, that the inner disk tilt can be more than several times larger than the original disk tilt, and we provide physical reasoning for this effect. We explore the transition in disk behavior as the misalignment angle is increased, finding increased dissipation associated with regions of strong warping. For large enough misalignments the disk becomes unstable to disk tearing and breaks into discrete planes. For the simulations we present here, we show that the total (physical and numerical) viscosity at the time the disk breaks is small enough that the disk tearing occurs in the wave-like regime, substantiating that disk tearing is possible in this region of parameter space. Our simulations demonstrate that high spatial resolution, and thus low numerical viscosity, is required to accurately model the warp dynamics in this regime. Finally, we discuss the observational implications of our results.


2021 ◽  
Vol 923 (2) ◽  
pp. 223
Author(s):  
Yongda Zhu ◽  
George D. Becker ◽  
Sarah E. I. Bosman ◽  
Laura C. Keating ◽  
Holly M. Christenson ◽  
...  

Abstract We present a new investigation of the intergalactic medium (IGM) near the end of reionization using “dark gaps” in the Lyα forest. Using spectra of 55 QSOs at z em > 5.5, including new data from the XQR-30 VLT Large Programme, we identify gaps in the Lyα forest where the transmission averaged over 1 comoving h −1 Mpc bins falls below 5%. Nine ultralong (L > 80 h −1 Mpc) dark gaps are identified at z < 6. In addition, we quantify the fraction of QSO spectra exhibiting gaps longer than 30 h −1 Mpc, F 30, as a function of redshift. We measure F 30 ≃ 0.9, 0.6, and 0.15 at z = 6.0, 5.8, and 5.6, respectively, with the last of these long dark gaps persisting down to z ≃5.3. Comparing our results with predictions from hydrodynamical simulations, we find that the data are consistent with models wherein reionization extends significantly below redshift six. Models wherein the IGM is essentially fully reionized that retain large-scale fluctuations in the ionizing UV background at z ≲6 are also potentially consistent with the data. Overall, our results suggest that signatures of reionization in the form of islands of neutral hydrogen and/or large-scale fluctuations in the ionizing background remain present in the IGM until at least z ≃ 5.3.


2021 ◽  
Vol 922 (2) ◽  
pp. 193
Author(s):  
Anna T. P. Schauer ◽  
Volker Bromm ◽  
Michael Boylan-Kolchin ◽  
Simon C. O. Glover ◽  
Ralf S. Klessen

Abstract The formation of globular clusters and their relation to the distribution of dark matter have long puzzled astronomers. One of the most recently proposed globular cluster formation channels ties ancient star clusters to the large-scale streaming velocity of baryons relative to dark matter in the early universe. These streaming velocities affect the global infall of baryons into dark matter halos, the high-redshift halo mass function, and the earliest generations of stars. In some cases, streaming velocities may result in dense regions of dark matter-free gas that becomes Jeans unstable, potentially leading to the formation of compact star clusters. We investigate this hypothesis using cosmological hydrodynamical simulations that include a full chemical network and the formation and destruction of H2, a process crucial for the formation of the first stars. We find that high-density gas in regions with significant streaming velocities is indeed somewhat offset from the centers of dark matter halos, but this offset is typically significantly smaller than the virial radius. Gas outside of dark matter halos never reaches Jeans-unstable densities in our simulations. We postulate that low-level (Z ≈ 10−3 Z ⊙) metal enrichment by Population III supernovae may enable cooling in the extra-virial regions, allowing gas outside of dark matter halos to cool to the cosmic microwave background temperature and become Jeans unstable. Follow-up simulations that include both streaming velocities and metal enrichment by Population III supernovae are needed to understand if streaming velocities provide one path for the formation of globular clusters in the early universe.


2021 ◽  
Vol 922 (1) ◽  
pp. L6
Author(s):  
Andrea Franchetto ◽  
Stephanie Tonnesen ◽  
Bianca M. Poggianti ◽  
Benedetta Vulcani ◽  
Marco Gullieuszik ◽  
...  

Abstract Hydrodynamical simulations show that the ram pressure stripping in galaxy clusters fosters a strong interaction between stripped interstellar medium (ISM) and the surrounding medium, with the possibility of intracluster medium (ICM) cooling into cold gas clouds. Exploiting the MUSE observation of three jellyfish galaxies from the GAs Stripping Phenomena in galaxies with MUSE (GASP) survey, we explore the gas metallicity of star-forming clumps in their gas tails. We find that the oxygen abundance of the stripped gas decreases as a function of the distance from the parent galaxy disk; the observed metallicity profiles indicate that more than 40% of the most metal-poor stripped clouds are constituted by cooled ICM, in qualitative agreement with simulations that predict mixing between the metal-rich ISM and the metal-poor ICM.


Author(s):  
Daniel Elsender ◽  
Matthew R Bate

Abstract We present the analysis of the properties of large samples of protostellar discs formed in four radiation hydrodynamical simulations of star cluster formation. The four calculations have metallicities of 0.01, 0.1, 1 and 3 times solar metallicity. The calculations treat dust and gas temperatures separately and include a thermochemical model of the diffuse interstellar medium. We find the radii of discs of bound protostellar systems tend to decrease with decreasing metallicity, with the median characteristic radius of discs in the 0.01 and 3 times solar metallicity calculations being ≈20 and ≈65 au, respectively. Disc masses and radii of isolated protostars also tend to decrease with decreasing metallicity. We find that the circumstellar discs and orbits of bound protostellar pairs, and the two spins of the two protostars are all less well aligned with each other with lower metallicity than with higher metallicity. These variations with metallicity are due to increased small scale fragmentation due to lower opacities and greater cooling rates with lower metallicity, which increase the stellar multiplicity and increase dynamical interactions. We compare the disc masses and radii of protostellar systems from the solar metallicity calculation with recent surveys of discs around Class 0 and I objects in the Orion and Perseus star-forming regions. The masses and radii of the simulated discs have similar distributions to the observed Class 0 and I discs.


Sign in / Sign up

Export Citation Format

Share Document