scholarly journals Magnetic fields in our Milky Way Galaxy and nearby galaxies

2012 ◽  
Vol 8 (S294) ◽  
pp. 213-224 ◽  
Author(s):  
JinLin Han

AbstractMagnetic fields in our Galaxy and nearby galaxies have been revealed by starlight polarization, polarized emission from dust grains and clouds at millimeter and submillimeter wavelength, the Zeeman effect of spectral lines or maser lines from clouds or clumps, diffuse radio synchrotron emission from relativistic electrons in interstellar magnetic fields, and the Faraday rotation of background radio sources as well as pulsars for our Milky Way. It is easy to get a global structure for magnetic fields in nearby galaxies, while we have observed many details of magnetic fields in our Milky Way, especially by using pulsar rotation measure data. In general, magnetic fields in spiral galaxies probably have a large-scale structure. The fields follow the spiral arms with or without the field direction reversals. In the halo of spiral galaxies magnetic fields exist and probably also have a large-scale structure as toroidal and poloidal fields, but seem to be slightly weaker than those in the disk. In the central region of some galaxies, poloidal fields have been detected as vertical components. Magnetic field directions in galaxies seem to have been preserved during cloud formation and star formation, from large-scale diffuse interstellar medium to molecular clouds and then to the cloud cores in star formation regions or clumps for the maser spots. Magnetic fields in galaxies are passive to dynamics.

1999 ◽  
Vol 16 (1) ◽  
pp. 48-52 ◽  
Author(s):  
A. J. Rivers ◽  
P. A. Henning ◽  
R. C. Kraan-Korteweg

AbstractThe Dwingeloo Obscured Galaxies Survey (DOGS) is a 21-cm blind survey for galaxies hidden in the northern ‘Zone of Avoidance’ (ZOA): the portion of the optical extragalactic sky which is obscured by dust in the Milky Way. Like the Parkes southern hemisphere ZOA survey, the DOGS project is designed to reveal hidden dynamically important nearby galaxies and to help ‘fill in the blanks’ in the local large scale structure. To date, 36 galaxies have been detected by the Dwingeloo survey; 23 of these were previously unknown [no corresponding sources recorded in the NASA Extragalactic Database (NED)]. Among the interesting detections are three nearby galaxies in the vicinity of NGC 6946 and 11 detections in the Supergalactic plane crossing region. VLA follow-up observations have been conducted for several of the DOGS detections.


2010 ◽  
Vol 2010 ◽  
pp. 1-19 ◽  
Author(s):  
Dai G. Yamazaki ◽  
Kiyotomo Ichiki ◽  
Toshitaka Kajino ◽  
Grant J. Mathews

Magnetic fields are everywhere in nature, and they play an important role in every astronomical environment which involves the formation of plasma and currents. It is natural therefore to suppose that magnetic fields could be present in the turbulent high-temperature environment of the big bang. Such a primordial magnetic field (PMF) would be expected to manifest itself in the cosmic microwave background (CMB) temperature and polarization anisotropies, and also in the formation of large-scale structure. In this paper, we summarize the theoretical framework which we have developed to calculate the PMF power spectrum to high precision. Using this formulation, we summarize calculations of the effects of a PMF which take accurate quantitative account of the time evolution of the cutoff scale. We review the constructed numerical program, which is without approximation, and an improvement over the approach used in a number of previous works for studying the effect of the PMF on the cosmological perturbations. We demonstrate how the PMF is an important cosmological physical process on small scales. We also summarize the current constraints on the PMF amplitudeBλand the power spectral indexnBwhich have been deduced from the available CMB observational data by using our computational framework.


1985 ◽  
Vol 106 ◽  
pp. 203-204
Author(s):  
W.H. Mccutcheon ◽  
B. J. Robinson ◽  
R. N. Manchester ◽  
J. B. Whiteoak

The southern galactic-plane region, in the ranges 294° ≤ 1 ≤ 358°, −0°.075 ≤ b ≤ 0°.075, has been surveyed in the J = 1–0 line of 12CO with a sampling interval of 3′ arc. Observations were made with the 4-metre telescope at the CSIRO Division of Radiophysics in 1980 and 1981. Details of equipment and observing procedure are given in Robinson et al. (1982, 1983); see also McCutcheon et al. (1983).


1978 ◽  
Vol 77 ◽  
pp. 33-48 ◽  
Author(s):  
P.C. van der Kruit

This review concerns the large-scale structure of radio continuum emission in spiral galaxies (“the smooth background”), by which we mean the distribution of radio surface brightness at scales larger than, say, 1 kpc. Accordingly the nuclear emission and structure due to spiral arms and HII regions will not be a major topic of discussion here. Already the first mappings of the galactic background suggested that there is indeed a distribution of radio continuum emission extending throughout the Galaxy. This conclusion has been reinforced by the earliest observations of M31 by showing that the general emission from this object extended over at least the whole optical image. More recently, van der Kruit (1973a, b, c) separated the radio emission from a sample of spiral galaxies observed at 1415 MHz with the Westerbork Synthesis Radio Telescope (WSRT) into a nuclear, spiral arm and “base disk” component, showing that the latter component usually contains most of the flux density. This latter component is largely non-thermal and extends over the whole optical image (see also van der Kruit and Allen, 1976). Clearly it is astrophysically interesting to discuss the large-scale structure of the radio continuum emission.


2006 ◽  
Vol 642 (1) ◽  
pp. L1-L4 ◽  
Author(s):  
Mikhail V. Medvedev ◽  
Luis O. Silva ◽  
Marc Kamionkowski

Sign in / Sign up

Export Citation Format

Share Document