scholarly journals On the Lagrange libration points of the perturbed Earth-Moon System

2014 ◽  
Vol 9 (S310) ◽  
pp. 192-193 ◽  
Author(s):  
Tatiana V. Salnikova ◽  
Sergey Ya. Stepanov

AbstractIn this work we discuss the elusive Kordylewski clouds – dust matter in the neighborhood of the Lagrange libration points L4, L5 of the Earth-Moon system. On the base of restricted planar circular four body problem we get some proof for possibility of existence of four such clouds and some rule to predict the optimal moments of time for their observation.

2015 ◽  
Vol 3 (2) ◽  
pp. 87
Author(s):  
M Javed Idrisi ◽  
Muhammad Amjad

<p>This paper deals with the existence and the stability of the earth-moon libration points in the restricted three-body problem. In this paper we have considered the bigger primary as an ellipsoid while the smaller one as a point-mass. This is observed that the collinear and non-collinear libration points exist only in the interval 0˚&lt;<em>φ </em>&lt; 45˚. There exist three collinear libration points and the non-collinear libration points are forming a right triangle with the primaries. Further observed that the libration points either collinear or non-collinear all are unstable in 0˚&lt;<em>φ </em>&lt; 45˚.</p>


1999 ◽  
Vol 63 (2) ◽  
pp. 189-196 ◽  
Author(s):  
A.A. Dzhumabayeva ◽  
A.L. Kunitsyn ◽  
A.T. Tuyakbayev

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Qiwei Guo ◽  
Bo Xu ◽  
Hanlun Lei

The attitude motion of a rigid spacecraft is studied in the Earth-Moon circular restricted three-body problem. Firstly, the equilibrium attitude and its stability as functions of the moments of inertia are discussed when the spacecraft is assumed at the libration points. Then, periodic attitudes of a spacecraft with mass distribution given in the stable regions are obtained. Regarding space mission applications, the Sun orientation is discussed, and the orbit-attitude resonances are constructed for spacecrafts working on the libration point orbits by means of a continuation procedure.


2020 ◽  
Vol 30 (10) ◽  
pp. 2050155
Author(s):  
Euaggelos E. Zotos

The planar version of the equilateral restricted four-body problem, with three unequal masses, is numerically investigated. By adopting the grid classification method we locate the coordinates, on the plane [Formula: see text], of the points of equilibrium, for all possible values of the masses of the primaries. The linear stability of the libration points is also determined, as a function of the masses. Our analysis indicates that linearly stable points of equilibrium exist only when one of the primaries has a considerably larger mass, with respect to the other two primary bodies, when the triangular configuration of the primaries is also dynamically stable.


1978 ◽  
Vol 41 ◽  
pp. 53-55
Author(s):  
V. Szebehely

AbstractThe stability of the three-body problem formed by the Sun, Jupiter and Saturn is investigated using surfaces of zero velocity. The results obtained with the models of the restricted and general problems of three bodies are compared with numerical integration. The system is found to be stable in the sense that Saturn will neither interrupt the (perturbed) binary orbit of Jupiter around the Sun, nor will it escape from the system. It is shown that the known classical triple stellar systems are “more stable” than the solar system, which in turn is “more stable” than the Earth-Moon system.


2020 ◽  
Vol 30 (02) ◽  
pp. 2030003 ◽  
Author(s):  
J. E. Osorio-Vargas ◽  
Guillermo A. González ◽  
F. L. Dubeibe

In this paper, we extend the basic equilateral four-body problem by introducing the effect of radiation pressure, Poynting–Robertson drag, and solar wind drag. In our setup, three primaries lie at the vertices of an equilateral triangle and move in circular orbits around their common center of mass. Here, one of the primaries is a radiating body and the fourth body (whose mass is negligible) does not affect the motion of the primaries. We show that the existence and the number of equilibrium points of the problem depend on the mass parameters and radiation factor. Consequently, the allowed regions of motion, the regions of the basins of convergence for the equilibrium points, and the basin entropy will also depend on these parameters. The present dynamical model is analyzed for three combinations of mass for the primaries: equal masses, two equal masses, different masses. As the main results, we find that in all cases the libration points are unstable if the radiation factor is larger than 0.01 and hence able to destroy the stability of the libration points in the restricted four-body problem composed by the Sun, Jupiter, Trojan asteroid and a test (dust) particle. Also, we conclude that the number of fixed points decreases with the increase of the radiation factor.


Sign in / Sign up

Export Citation Format

Share Document