scholarly journals CUMULATIVITY WITHOUT CLOSURE OF THE DOMAIN UNDER FINITE UNIONS

2008 ◽  
Vol 1 (3) ◽  
pp. 372-392 ◽  
Author(s):  
DOV M. GABBAY ◽  
KARL SCHLECHTA

For nonmonotonic logics, Cumulativity is an important logical rule. We show here that Cumulativity fans out into an infinity of different conditions, if the domain is not closed under finite unions.

2009 ◽  
Author(s):  
Robert M. Nosofsky ◽  
Mario Fific
Keyword(s):  

Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1292
Author(s):  
Muna Mohammed Bazuhair ◽  
Siti Zulaikha Mohd Jamaludin ◽  
Nur Ezlin Zamri ◽  
Mohd Shareduwan Mohd Kasihmuddin ◽  
Mohd. Asyraf Mansor ◽  
...  

One of the influential models in the artificial neural network (ANN) research field for addressing the issue of knowledge in the non-systematic logical rule is Random k Satisfiability. In this context, knowledge structure representation is also the potential application of Random k Satisfiability. Despite many attempts to represent logical rules in a non-systematic structure, previous studies have failed to consider higher-order logical rules. As the amount of information in the logical rule increases, the proposed network is unable to proceed to the retrieval phase, where the behavior of the Random Satisfiability can be observed. This study approaches these issues by proposing higher-order Random k Satisfiability for k ≤ 3 in the Hopfield Neural Network (HNN). In this regard, introducing the 3 Satisfiability logical rule to the existing network increases the synaptic weight dimensions in Lyapunov’s energy function and local field. In this study, we proposed an Election Algorithm (EA) to optimize the learning phase of HNN to compensate for the high computational complexity during the learning phase. This research extensively evaluates the proposed model using various performance metrics. The main findings of this research indicated the compatibility and performance of Random 3 Satisfiability logical representation during the learning and retrieval phase via EA with HNN in terms of error evaluations, energy analysis, similarity indices, and variability measures. The results also emphasized that the proposed Random 3 Satisfiability representation incorporates with EA in HNN is capable to optimize the learning and retrieval phase as compared to the conventional model, which deployed Exhaustive Search (ES).


Author(s):  
V. Wiktor Marek ◽  
Mirosław Truszczyński
Keyword(s):  

Author(s):  
Daniel Oberle ◽  
Christof Bornhovd ◽  
Michael Altenhofen

This chapter discusses scalability problems and solutions to services-based ubiquitous computing applications in real time enterprises. The scalability problems are (1) identifying relevant services for deployment, (2) verifying a composition by a logical rule framework, and (3) enabling the mapping of required services to the “best” available device. We argue that ontologies can help to counter these challenges. Subsequently, we provide a detailed introduction to ontologies. We focus on the ontology languages emerging from the corresponding W3C Semantic Web activity. The W3C recommendations have a high impact on future tools and the interoperability of ontology-based applications. We contrast the pros and cons of ontologies at a general level and demonstrate the benefits and challenges in our concrete smart items middleware.


Sign in / Sign up

Export Citation Format

Share Document