Dynamic biogeographic models and dinosaur origins

Author(s):  
Michael S. Y. LEE ◽  
Matthew G. BARON ◽  
David B. NORMAN ◽  
Paul M. BARRETT

ABSTRACTA comprehensive analysis of early dinosaur relationships raised the possibility that the group may have originated in Laurasia (Northern Hemisphere), rather than Gondwana (Southern Hemisphere) as often thought. However, that study focused solely on morphology and phylogenetic relationships and did not quantitatively evaluate this issue. Here, we investigate dinosaur origins using a novel Bayesian framework uniting tip-dated phylogenetics with dynamic, time-sliced biogeographic methods, which explicitly account for the age and locality of fossils and the changing interconnections of areas through time due to tectonic and eustatic change. Our analysis finds strong support for a Gondwanan origin of Dinosauria, with 99 % probability for South America (83 % for southern South America). Parsimony analysis gives concordant results. Inclusion of time-sliced biogeographic information affects ancestral state reconstructions (e.g., high connectivity between two regions increases uncertainty over which is the ancestral area) and influences tree topology (disfavouring uniting fossil taxa from localities that were widely separated during the relevant time slice). Our approach directly integrates plate tectonics with phylogenetics and divergence dating, and in doing so reaffirms southern South America as the most likely area for the geographic origin of Dinosauria.

2019 ◽  
Vol 64 (1) ◽  
pp. 379-397 ◽  
Author(s):  
Lorenza Beati ◽  
Hans Klompen

Improved understanding of tick phylogeny has allowed testing of some biogeographical patterns. On the basis of both literature data and a meta-analysis of available sequence data, there is strong support for a Gondwanan origin of Ixodidae, and probably Ixodida. A particularly strong pattern is observed for the genus Amblyomma, which appears to have originated in Antarctica/southern South America, with subsequent dispersal to Australia. The endemic Australian lineages of Ixodidae (no other continent has such a pattern) appear to result from separate dispersal events, probably from Antarctica. Minimum ages for a number of divergences are determined as part of an updated temporal framework for tick evolution. Alternative hypotheses for tick evolution, such as a very old Pangean group, a Northern hemisphere origin, or an Australian origin, fit less well with observed phylogeographic patterns.


2010 ◽  
Vol 42 (6) ◽  
pp. 727-737 ◽  
Author(s):  
David J. GALLOWAY

AbstractAspiciliopsis macrophthalma, Placopsis fusciduloides, P. gelidioides and P. tararuana are reported for the first time from southern South America. New records for 13 species of Placopsis in southern South America are reported, and a revised key to 22 species of Placopsis and A. macrophthalma in the region is given.


Phytotaxa ◽  
2013 ◽  
Vol 146 (1) ◽  
pp. 1 ◽  
Author(s):  
PETER B. HEENAN ◽  
ROB D. SMISSEN

The generic taxonomy of the Nothofagaceae is revised. We present a new phylogenetic analysis of morphological characters and map these characters onto a recently published phylogenetic tree obtained from DNA sequence data. Results of these and previous analyses strongly support the monophyly of four clades of Nothofagaceae that are currently treated as subgenera of Nothofagus. The four clades of Nothofagaceae are robust and well-supported, with deep stem divergences, have evolutionary equivalence with other genera of Fagales, and can be circumscribed with morphological characters. We argue that these morphological and molecular differences are sufficient for the four clades of Nothofagaceae to be recognised at the primary rank of genus, and that this classification will be more informative and efficient than the currently circumscribed Nothofagus with four subgenera.        Nothofagus is recircumscribed to include five species from southern South America, Lophozonia and Trisyngyne are reinstated, and the new genus Fuscospora is described. Fuscospora and Lophozonia, with six and seven species respectively, occur in New Zealand, southern South America and Australia. Trisyngyne comprises 25 species from New Caledonia, Papua New Guinea and Indonesia. New combinations are provided where necessary in each of these genera.


Sign in / Sign up

Export Citation Format

Share Document