dispersal events
Recently Published Documents


TOTAL DOCUMENTS

206
(FIVE YEARS 72)

H-INDEX

30
(FIVE YEARS 4)

2021 ◽  
Vol 46 (4) ◽  
pp. 998-1010
Author(s):  
Javier Jauregui-Lazo ◽  
Daniel Potter

Abstract— Acaena (Rosaceae) is the most complex and ecologically variable genus in Sanguisorbinae. Although it has been the subject of several taxonomic treatments, the largest phylogenetic analysis to date only sampled a small fraction of the total global diversity (five to seven out of 45 to 50 species). This study included most of the species to elucidate the phylogenetic relationships of Acaena and biogeographic patterns in Sanguisorbinae. Phylogenetic analyses of non-coding nuclear (ITS region) and chloroplast (trnL-F) DNA sequence markers using maximum likelihood and Bayesian analyses suggested that Acaena is a paraphyletic group with species of Margyricarpus and Tetraglochin nested within it. We identified strong support for eight subclades that are geographically or taxonomically structured. Nevertheless, the species-level relationships within subclades are still uncertain, which may be due to rapid diversification and lack of informative characters in the markers used. Sanguisorbinae, a primarily Southern Hemisphere clade, exhibits a classic Gondwana disjunct distribution. This current distribution is explained primarily by eight long-distance dispersal events. Our results suggested that Sanguisorbinae split into Cliffortia and Acaena around 13.6 mya. While Cliffortia diversified in southern South Africa, Acaena experienced several migration events in the Southern Hemisphere. Our estimation of the ancestral range suggested that Acaena likely originated in South Africa, followed by migration and subsequent diversification into southern South America. From there, the genus migrated to New Zealand, throughout the Andes, and to tropical areas in Central America, reaching as far north as California. Chile and New Zealand are the main sources of propagules for dispersal as well as the greatest diversity for the genus. The evolutionary relationships of species in Acaena combine a history of rapid diversifications, long-distance dispersals, and genetic variation within some taxa. Further research should be undertaken to clarify the infraspecific classification of A. magellanica.


Author(s):  
Andreas Otterbeck ◽  
Andreas Lindén ◽  
Ruslan Gunko ◽  
Eeva Ylinen ◽  
Patrik Byholm

AbstractPhilopatry and monogamy are conventionally viewed as strategies for improving fitness. Many philopatric and monogamous species have, however, been shown to perform breeding dispersal—an exchange of territory (and often also partner) between two breeding seasons. The adaptiveness of breeding dispersal remains controversial, as data remain scarce and sporadic. For the Northern Goshawk, a typically highly philopatric and monogamous forest raptor, pairs breeding in barren forest landscapes produce fewer fledglings than pairs breeding in more productive landscapes. Using data on Finnish breeding female Goshawks (Accipiter gentilis) during 1999–2016, we tested the hypotheses that: (1) breeding dispersal is more likely at barren territories, (2) dispersing females move to less barren territories, and (3) breeding dispersal improves the survival of young. About 29% of the female Goshawks in our study performed breeding dispersal, which contrasts to philopatry and suggest that site and partner fidelities show large variation within the species’ breeding range. We found no evidence that territorial landscape barrenness (proxy on habitat quality) affects the probability of breeding dispersal. However, females that dispersed upgraded to less barren territories. Nevertheless, there were no subsequent effects of breeding dispersal on reproductive performance, suggesting no obvious difference in the capability of rearing young at either site. Although dispersal events were directed to less barren habitats, we suggest that female dispersal is not driven by the pursue for more prospersous habitats, rather that those females are forced to move, for whatever reason. In addition to other observed reasons such as female–female competition for mates and loss of the original mate, intense logging of mature forests lowering local food availability and restricting nest site availability were likely a partial cause of increased breeding dispersal.


2021 ◽  
Author(s):  
Jiansi Gao ◽  
Michael R. May ◽  
Bruce Rannala ◽  
Brian R. Moore

Phylodynamic methods reveal the spatial and temporal dynamics of viral geographic spread, and have featured prominently in studies of the COVID-19 pandemic. Virtually all previous studies are based on phylodynamic models that assume—despite direct and compelling evidence to the contrary—that rates of viral geographic dispersal are constant through time. Here, we: (1) extend phylodynamic models to allow both the average and relative rates of viral dispersal to vary independently between pre-specified time intervals; (2) implement methods to infer the number and timing of viral dispersal events between areas; and (3) develop statistics to assess the absolute fit of phylodynamic models to empirical datasets. We first validate our new methods using analyses of simulated data, and then apply them to a SARS-CoV-2 dataset from the early phase of the COVID-19 pandemic. We show that: (1) under simulation, failure to accommodate interval-specific variation in the study data will severely bias parameter estimates; (2) in practice, our interval-specific phylodynamic models can significantly improve the relative and absolute fit to empirical data; and (3) the increased realism of our interval-specific phylodynamic models provides qualitatively different inferences regarding key aspects of the COVID-19 pandemic—revealing significant temporal variation in global viral dispersal rates, viral dispersal routes, and number of viral dispersal events between areas—and alters interpretations regarding the efficacy of intervention measures to mitigate the pandemic.


2021 ◽  
Vol 1 ◽  
pp. 145
Author(s):  
Laura Gervais ◽  
Pierick Mouginot ◽  
Anais Gibert ◽  
Oceane Salles ◽  
Mathieu Latutrie ◽  
...  

Background: In contrast with historical knowledge, a recent view posits that a non-negligible proportion of populations might respond positively to habitat fragmentation. Populations might thrive in a fragmented landscape if functional connectivity, i.e., the net flow of individuals or their genes moving among suitable habitat patches, is not restricted. Alternatively, functional connectivity might be typically limited but enhanced by a higher reproductive success of migrants. Methods: We tested for this hypothesis in wild snapdragon plants inhabiting six patches separated by seawater in a fragmented Mediterranean scrubland landscape. We reconstructed their pedigree by using a parentage assignment method based on microsatellite genetic markers. We then estimated functional connectivity and the reproductive success of plants resulting from between-patch dispersal events. Results: We found that wild snapdragon plants thrived in this fragmented landscape, although functional connectivity between habitat patches was weak (i.e. 2.9%). The progeny resulting from between-patch dispersal events had a higher reproductive success than residents. Conclusion: Our findings expose a remarkable aspect of fragmented landscapes, where weak functional connectivity was enhanced by higher reproductive success after migration. This process might have the potential to compensate at least partly the negative impact of fragmentation.


Diversity ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 596
Author(s):  
Manuel A. Barrios-Izás ◽  
Juan J. Morrone

Plumolepilius Barrios-Izás & Anderson, 2016 is a leaf litter weevil genus that inhabits montane broadleaf forests from southern Mexico to northern Panama. The genus consists of 27 species, 22 distributed in the Chiapas Highlands province (Mexican Transition Zone) and 5 found in the Pacific dominion (Neotropical region) in Costa Rica and Panamá. Here, we analyze the phylogenetic relationships of the species of Plumolepilius based on 20 external body characters and 9 characters from the genitalia. The first dichotomy of the cladogram separates two species from the Pacific dominion from the remaining species of Plumolepilius from the Chiapas Highlands province and three species restricted to the Pacific dominion. We hypothesize that redundant distributions in the taxon-area cladogram of the genus may be due to dispersal events, probably during the Pleistocene glaciations.


2021 ◽  
Vol 2 ◽  
Author(s):  
Magdalene N. Ngeve ◽  
Nico Koedam ◽  
Ludwig Triest

Dispersal plays a crucial role in the connectivity of established mangrove populations and in species range dynamics. As species ranges shift in response to climate change, range expansions can occur from incremental short-distance dispersal events and from stochastic long-distance dispersal events. Most population genetic research dealt with historically accumulated events though evidence of actual propagule dispersal allows to estimate genotypic features and origin of founders. In this study, we aim to disentangle a contemporary dispersal event. Using microsatellite markers, we genotyped 60 Rhizophora racemosa drift propagules obtained on a bare unforested coastal area in southern Cameroon, estimated their relationship to 109 adult trees from most proximate sites (which were 3–85 km away), and assessed their relative difference with 873 trees of major mangrove areas (> 300 km) along the Cameroonian coastline. Proximate mangrove populations were considered as potential source populations in assignment tests. However, drift propagules could not be assigned to any of the Cameroonian mangrove sites and were genetically isolated from Cameroonian populations. Drift propagules showed higher levels of genetic diversity and private alleles giving a higher relatedness to each other than to any putative source population. Chloroplast sequences were used to confirm the identity of drift propagules as R. racemosa. We postulate that a complex interaction of ocean currents, estuarine geomorphology, and tidal patterns explain drift propagule dispersal to an area. Most likely the investigated cohort of propagules originated from more southern mangrove areas of the West African range beyond the Cameroonian border. This study unraveled the allelic, genetic, and genotypic features of stranded propagules following a stochastic long-distance dispersal. Transboundary dispersal of these propagules highlights the need for intergovernmental efforts in the management of biodiversity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chris T. Barker ◽  
David W. E. Hone ◽  
Darren Naish ◽  
Andrea Cau ◽  
Jeremy A. F. Lockwood ◽  
...  

AbstractSpinosaurids are among the most distinctive and yet poorly-known of large-bodied theropod dinosaurs, a situation exacerbated by their mostly fragmentary fossil record and competing views regarding their palaeobiology. Here, we report two new Early Cretaceous spinosaurid specimens from the Wessex Formation (Barremian) of the Isle of Wight. Large-scale phylogenetic analyses using parsimony and Bayesian techniques recover the pair in a new clade within Baryonychinae that also includes the hypodigm of the African spinosaurid Suchomimus. Both specimens represent distinct and novel taxa, herein named Ceratosuchops inferodios gen. et sp. nov. and Riparovenator milnerae gen. et sp. nov. A palaeogeographic reconstruction suggests a European origin for Spinosauridae, with at least two dispersal events into Africa. These new finds provide welcome information on poorly sampled areas of spinosaurid anatomy, suggest that sympatry was present and potentially common in baryonychines and spinosaurids as a whole, and contribute to updated palaeobiogeographic reconstructions for the clade.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bastien Mennecart ◽  
Manuela Aiglstorfer ◽  
Yikun Li ◽  
Chunxiao Li ◽  
ShiQi Wang

AbstractFaunal provincialism between the North and South parts of Eastern Asia is shown to have been in place since the late Eocene. This provincialism structured the mammalian dispersals across Eurasia for millions of years and provides insights into both palaeonvironments and palaeoclimate zonation. In addition, this study reveals the oldest record of a crown ruminant (Iberomeryx from Shinao, China). Ecologically, as well as economically, ruminant artiodactyls are one of the most important large mammal groups today. The revision of the ruminants from the Shinao Formation, from the Caijiachong marls and Xiaerhete, resulted in two new taxa and shows that the different provinces were populated by distinct taxa living in different environments, dominated by the monsoon in the South and drier conditions in the North. Evaluating this result in a Eurasian context demonstrates that the dispersals from Asia to Europe was complex. These results confirm that there were at least two dispersal events, distinct in space and time: the Grande-Coupure from Northern and Central Asia along the North ca. 34 Mya and the Bachitherium dispersal event from the Southern province along a southerly route ca. 31 Mya.


Sign in / Sign up

Export Citation Format

Share Document