Application of SRRs in conventional waveguide slot array to achieve performance improvement and dual-band characteristics

2016 ◽  
Vol 9 (5) ◽  
pp. 1085-1091 ◽  
Author(s):  
Avinash Chandra ◽  
Sushrut Das

This paper presents application of split ring resonators (SRR) in conventional waveguide slot array antenna to achieve performance improvement and multiband characteristics. Three SRRs have been placed on the transverse plane of a conventional slotted waveguide and has been simulated and measured. The measured results show that the antenna has dual band response with respective 10 dB return loss bandwidth 8.23–9.23 GHz (11.45%) and 9.68–11.01 GHz (12.87%). The measured gain and radiation pattern reveal that the proposed antenna has higher gain and front to back radiation ratio as compared with a conventional slotted waveguide antenna. Equivalent circuit of the proposed antenna also has been presented.

2015 ◽  
Vol 74 ◽  
pp. 659-664 ◽  
Author(s):  
Yan-Peng Jia ◽  
Yong-Liang Zhang ◽  
Xian-Zi Dong ◽  
Mei-Ling Zheng ◽  
Zhen-Sheng Zhao ◽  
...  

2011 ◽  
Vol 59 (8) ◽  
pp. 2758-2765 ◽  
Author(s):  
Óscar Quevedo-Teruel ◽  
Malcolm Ng Mou Kehn ◽  
Eva Rajo-Iglesias

2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Mehdi Hamidkhani ◽  
Rasool Sadeghi ◽  
Mohamadreza Karimi

In modern microwave telecommunication systems, especially in low phase noise oscillators, there is a need for resonators with low insertion losses and high Q-factor. More specifically, it is of high interest to design resonators with high group delay. In this paper, three novel dual-band complementary split-ring resonators (CSRRs) featuring high group delay etched on the waveguide surface by using substrate integrated waveguides are investigated and proposed. They are designed for a frequency range of 4.5–5.5 GHz. Group delay rates for the first, second, and third resonators were approximated as much as 23 ns, 293 ns, and 90 ns, respectively. We also proposed a new practical method to develop a wide tuning range SIW CSRR cavity resonator with a small tuning voltage in the second resonator, which leads to about 19% and 1% of tuning frequency band in the first and second bands, respectively. Finally, some of their applications in the design of filter, diplexer, and low phase noise oscillator will be investigated.


Sign in / Sign up

Export Citation Format

Share Document