Design of Dual-Band Notched UWB Antenna Loaded with Split Ring Resonators for Wide Band Rejection

Author(s):  
Penchala Reddy Sura ◽  
Sekhar M ◽  
Katta Anil Kumar
2016 ◽  
Vol 9 (4) ◽  
pp. 875-880 ◽  
Author(s):  
Haijun Peng ◽  
Chunhua Wang ◽  
Lv Zhao ◽  
Jun Liu

This paper presents the design of a split-ring resonators (SRR) loaded coplanar waveguide-fed ultra-wide band (UWB) antenna. As using the electromagnetic coupling SRR connected by open-ended microstrip lines, this UWB antenna achieves wide band-notched characteristics. The frequency of the proposed antenna operates from 2.37 to 10.93 GHz with a broad notch band covers from 4.96 to 6.15 GHz (IEEE 802.11.ac), the relative stopped bandwidth of the notch band achieves 20.42%. Besides, theoretical analysis and experimental results are proposed to illustrate and validate this proposed antenna.


2015 ◽  
Vol 74 ◽  
pp. 659-664 ◽  
Author(s):  
Yan-Peng Jia ◽  
Yong-Liang Zhang ◽  
Xian-Zi Dong ◽  
Mei-Ling Zheng ◽  
Zhen-Sheng Zhao ◽  
...  

2011 ◽  
Vol 59 (8) ◽  
pp. 2758-2765 ◽  
Author(s):  
Óscar Quevedo-Teruel ◽  
Malcolm Ng Mou Kehn ◽  
Eva Rajo-Iglesias

2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Mehdi Hamidkhani ◽  
Rasool Sadeghi ◽  
Mohamadreza Karimi

In modern microwave telecommunication systems, especially in low phase noise oscillators, there is a need for resonators with low insertion losses and high Q-factor. More specifically, it is of high interest to design resonators with high group delay. In this paper, three novel dual-band complementary split-ring resonators (CSRRs) featuring high group delay etched on the waveguide surface by using substrate integrated waveguides are investigated and proposed. They are designed for a frequency range of 4.5–5.5 GHz. Group delay rates for the first, second, and third resonators were approximated as much as 23 ns, 293 ns, and 90 ns, respectively. We also proposed a new practical method to develop a wide tuning range SIW CSRR cavity resonator with a small tuning voltage in the second resonator, which leads to about 19% and 1% of tuning frequency band in the first and second bands, respectively. Finally, some of their applications in the design of filter, diplexer, and low phase noise oscillator will be investigated.


Sign in / Sign up

Export Citation Format

Share Document