thin wires
Recently Published Documents


TOTAL DOCUMENTS

406
(FIVE YEARS 34)

H-INDEX

29
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Weijie Jiang ◽  
Tao Chen

Abstract We design and propose a five-band absorber based on graphene metamaterial for the terahertz (THz) sensing field. The localized surface plasmon resonances (LSPR) of patterned graphene are excited, contributing to five tunable ultra-narrow absorption peaks, which are specified by the electric field distributions. Moreover, the absorber is insensitive to different polarization modes and incident angles. When increasing the Fermi level of the patterned graphene, which is composed of a round ring and a square ring connected by four thin wires, the resonant frequencies exhibit distinct blue shifts. For refractive index sensing, due to the addition of a continuous dielectric groove, the theoretical results show that the maximum averaged normalized sensitivity, Q factor, and FOM can reach 0.647 RIU-1 (refractive index unit, RIU), 355.94, and 215.25 RIU-1, indicating that the sensing performances are further enhanced compared with previous works. As a result, the proposed structure may provide a new method to realize ultrasensing in the THz region.


Author(s):  
Sebastian Meyer ◽  
Andreas Wolf ◽  
Daniela Sanders ◽  
Kamila Iskhakova ◽  
Hanna Ćwieka ◽  
...  

Magnesium-silver alloys are of high interest for the use as temporary bone implants due to their antibacterial properties in addition to biocompatibility and biodegradability. Thin wires in particular can be used for scaffolding, but the determination of their degradation rate and homogeneity using traditional methods is difficult. Therefore, we have employed 3D imaging using X-ray near-field holotomography with sub-micrometer resolution to study the degradation of thin (250 μm diameter) Mg-2Ag and Mg-6Ag wires. The wires were studied in two states, recrystallized and solution annealed to assess the influence of Ag content and precipitates on the degradation. Imaging was employed after degradation in Dulbecco’s modified Eagle’s medium and 10% fetal bovine serum after 1 to 7 days. At 3 days of immersion the degradation rates of both alloys in both states were similar, but at 7 days higher silver content and solution annealing lead to decreased degradation rates. The opposite was observed for the pitting factor. Overall, the standard deviation of the determined parameters was high, owing to the relatively small field of view during imaging and high degradation inhomogeneity of the samples. Nevertheless, Mg-6Ag in the solution annealed state emerges as a potential material for thin wire manufacturing for implants.


2021 ◽  
Vol 16 (12) ◽  
pp. T12003
Author(s):  
A.M. Baldini ◽  
G. Cavoto ◽  
F. Cei ◽  
M. Chiappini ◽  
G. Chiarello ◽  
...  

Abstract Ultra-thin metallic anode and cathode wires are frequently employed in low-mass gaseous detectors for precision experiments, where the amount of material crossed by charged particles must be minimised. We present here the results of an analysis of the mechanical stress and chemical corrosion effects observed in 40 and 50 μm diameter silver plated aluminum wires mounted within the volume of the MEG II drift chamber, which caused the breakage of about one hundred wires (over a total of ≈ 12000). This analysis is based on the careful inspection of the broken wires by means of optical and electronic microscopes and on a detailed recording of all breaking incidents. We present a simple empirical model which relates the number of broken wires to their exposure time to atmospheric relative humidity and to their mechanical tension, which is necessary for mechanical stability in the presence of electrostatic fields of several kV/cm. Finally we discuss how wire breakages can be avoided or at least strongly reduced by operating in controlled atmosphere during the mounting stages of the wires within the drift chamber and by choosing a 25 % thicker wire diameter, which has very small effects on the detector resolution and efficiency and can be obtained by using a safer fabrication technique.


2021 ◽  
Vol 9 ◽  
Author(s):  
Sebastian Littin ◽  
Feng Jia ◽  
Philipp Amrein ◽  
Maxim Zaitsev

The design of gradient coils is sometimes perceived as complex and counterintuitive. However, a current density is connected to a stream function in fact by a simple relation. Here we present an intuitive open source code collection to derive stream functions from current densities on simple surface geometries. Discrete thin wires, oriented orthogonally to the main magnetic field direction are used to describe a surface current density. An inverse problem is solved and stream functions are derived to find coil designs in the current and stream function domains. The flexibility of the design method is demonstrated by deriving gradient coil designs on several different surface topologies. This collection is primarily intended for teaching, as well as for demonstrating all gradient coil design steps with openly available software tools.


Metals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1422
Author(s):  
Sebastian Meyer ◽  
Andreas Wolf ◽  
Daniela Sanders ◽  
Kamila Iskhakova ◽  
Hanna Ćwieka ◽  
...  

Magnesium–silver alloys are of high interest for the use as temporary bone implants due to their antibacterial properties in addition to biocompatibility and biodegradability. Thin wires in particular can be used for scaffolding, but the determination of their degradation rate and homogeneity using traditional methods is difficult. Therefore, we have employed 3D imaging using X-ray near-field holotomography with sub-micrometer resolution to study the degradation of thin (250 μm diameter) Mg-2Ag and Mg-6Ag wires. The wires were studied in two states, recrystallized and solution annealed to assess the influence of Ag content and precipitates on the degradation. Imaging was employed after degradation in Dulbecco’s modified Eagle’s medium and 10% fetal bovine serum after 1 to 7 days. At 3 days of immersion the degradation rates of both alloys in both states were similar, but at 7 days higher silver content and solution annealing lead to decreased degradation rates. The opposite was observed for the pitting factor. Overall, the standard deviation of the determined parameters was high, owing to the relatively small field of view during imaging and high degradation inhomogeneity of the samples. Nevertheless, Mg-6Ag in the solution annealed state emerges as a potential material for thin wire manufacturing for implants.


2021 ◽  
pp. 81-122
Author(s):  
Walton C. Gibson
Keyword(s):  

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Carlo Forestiere ◽  
Giovanni Miano ◽  
Bruno Miranda

Sign in / Sign up

Export Citation Format

Share Document