slot antenna
Recently Published Documents


TOTAL DOCUMENTS

4472
(FIVE YEARS 816)

H-INDEX

76
(FIVE YEARS 10)

Signals ◽  
2022 ◽  
Vol 3 (1) ◽  
pp. 29-37
Author(s):  
Muhammad Ikram

The current and future wireless communication systems, WiFi, fourth generation (4G), fifth generation (5G), Beyond5G, and sixth generation (6G), are mixtures of many frequency spectrums. Thus, multi-functional common or shared aperture antenna modules, which operate at multiband frequency spectrums, are very desirable. This paper presents a multiple-input and multiple-output (MIMO) antenna design for the 5G/B5G Internet of Things (IoT). The proposed MIMO antenna is designed to operate at multiple bands, i.e., at 3.5 GHz, 3.6 GHz, and 3.7 GHz microwave Sub-6 GHz and 28 GHz mm-wave bands, by employing a single radiating aperture, which is based on a tapered slot antenna. As a proof of concept, multiple tapered slots are placed on the corner of the proposed prototype. With this configuration, multiple directive beams pointing in different directions have been achieved at both bands, which in turn provide uncorrelated channels in MIMO communication. A 3.5 dBi realized gain at 3.6 GHz and an 8 dBi realized gain at 28 GHz are achieved, showing that the proposed design is a suitable candidate for multiple wireless communication standards at Sub-6 GHz and mm-wave bands. The final MIMO structure is printed using PCB technology with an overall size of 120 × 60 × 10 mm3, which matches the dimensions of a modern mobile phone.


Author(s):  
Shine Let Gunamony ◽  
S. Rekha ◽  
Benin Pratap Chandran
Keyword(s):  

Author(s):  
Yukun Zou ◽  
Xiangkun Kong ◽  
Lei Xing ◽  
Shunliu Jiang ◽  
Xuemeng Wang ◽  
...  
Keyword(s):  

Author(s):  
S. Asha ◽  
M. Bindhu ◽  
J.C. Elizabeth ◽  
P. Pattunnarajam ◽  
Beulah Jackson
Keyword(s):  

2021 ◽  
Vol 21 (2) ◽  
pp. 85
Author(s):  
Findi Nur Witriani ◽  
Yahya Syukri Amrullah ◽  
Fajri Darwis ◽  
Taufiqqurrachman Taufiqqurrachman ◽  
Yusuf Nur Wijayanto ◽  
...  

Microwave imaging, such as images for radiological inspection in the medical profession, is one of the applications utilized in ultra-wideband (UWB) frequency ranges. The Vivaldi antenna is one of the most popular antennas for this purpose. The antenna is utilized because of its simple, lightweight, and compact design, as well as its excellent efficiency and gain capabilities. In this work, we present a high-gain Vivaldi antenna for microwave imaging applications. The proposed Vivaldi antenna is designed using a double-slot structure method with the addition of corrugated edges and a semicircle director aimed at improving the gain. The antenna is designed to operate at frequencies ranging from 3.1 to 10.6 GHz. Based on the modeling findings, the suggested antenna attain a bandwidth of 7.5 GHz with operating frequencies from 3.1 GHz to 10.6 GHz for a VSWR of less than two. In comparison to a typical single slot antenna, the suggested antenna provides a substantial boost in gain performance. The increase in gain is proportional to the frequency of operation. The constructed antenna has a lower bandwidth than the simulated one, with operating frequencies of 3.5 GHz – 3.75 GHz and 4.25 – 10.89 GHz, respectively, and useable bandwidths of 250 MHz and 6.64 GHz. All these results suggest that the antenna is suitable for microwave imaging applications.


Sign in / Sign up

Export Citation Format

Share Document