scholarly journals A remark on the distributive law for an ideal in a commutative ring

1966 ◽  
Vol 7 (4) ◽  
pp. 193-198 ◽  
Author(s):  
C. U. Jensen

Let R be a commutative ring, with an identity element. It is the purpose of this note to establish conditions for an arbitrary but fixed ideal a of R to satisfy the distributive lawfor all ideals b and c of R. In particular, in the Noetherian case, this will be related to the decomposition of a into prime ideals. We start withProposition 1. For a fixed ideal a in a commutative ring R with an identity element, the following conditions are equivalent.

1961 ◽  
Vol 57 (3) ◽  
pp. 483-488
Author(s):  
D. G. Northcott

Let Λ be a commutative ring with an identity element and c an element of Λ which is not a zero divisor Denote by Ω the residue class ring Λ/Λc. If now M is a Λ-module for which c is not a zero divisor, and A is an Ω-module, then a theorem of Rees (2) asserts that, for every non-negative integer n, we have a Λ-isomorphismThis reduction theorem has found a number of useful and interesting applications.


Filomat ◽  
2017 ◽  
Vol 31 (10) ◽  
pp. 2933-2941 ◽  
Author(s):  
Unsal Tekir ◽  
Suat Koc ◽  
Kursat Oral

In this paper, we present a new classes of ideals: called n-ideal. Let R be a commutative ring with nonzero identity. We define a proper ideal I of R as an n-ideal if whenever ab ? I with a ? ?0, then b ? I for every a,b ? R. We investigate some properties of n-ideals analogous with prime ideals. Also, we give many examples with regard to n-ideals.


1979 ◽  
Vol 85 (2) ◽  
pp. 317-324 ◽  
Author(s):  
C. M. Edwards

A JB-algebra A is a real Jordan algebra, which is also a Banach space, the norm in which satisfies the conditions thatandfor all elements a and b in A. It follows from (1.1) and (l.2) thatfor all elements a and b in A. When the JB-algebra A possesses an identity element then A is said to be a unital JB-algebra and (1.2) is equivalent to the condition thatfor all elements a and b in A. For the general theory of JB-algebras the reader is referred to (2), (3), (7) and (10).


1972 ◽  
Vol 24 (4) ◽  
pp. 566-572 ◽  
Author(s):  
R. E. Propes

The purpose of this paper is to characterize the radical ideals of principal ideal domains and Dedekind domains. We show that if T is a radical class and R is a PID, then T(R) is an intersection of prime ideals of R. More specifically, ifthen T(R) = (p1p2 … pk), where p1, p2, … , pk are distinct primes, and where (p1p2 … Pk) denotes the principal ideal of R generated by p1p2 … pk. We also characterize the radical ideals of commutative principal ideal rings. For radical ideals of Dedekind domains we obtain a characterization similar to the one given for PID's.


1979 ◽  
Vol 31 (1) ◽  
pp. 189-196
Author(s):  
Michael Rich

Let A be a ring (not necessarily associative) in which 2x = a has a unique solution for each a ∈ A. Then it is known that if A contains an identity element 1 and an involution j : x ↦ x and if Ja is the canonical involution on An determined by where the ai al−l, 1 ≦ i ≦ n are symmetric elements in the nucleus of A then H(An, Ja), the set of symmetric elements of An, for n ≧ 3 is a Jordan ring if and only if either A is associative or n = 3 and A is an alternative ring whose symmetric elements lie in its nucleus [2, p. 127].


2019 ◽  
Vol 13 (07) ◽  
pp. 2050121
Author(s):  
M. Aijaz ◽  
S. Pirzada

Let [Formula: see text] be a commutative ring with unity [Formula: see text]. The annihilating-ideal graph of [Formula: see text], denoted by [Formula: see text], is defined to be the graph with vertex set [Formula: see text] — the set of non-zero annihilating ideals of [Formula: see text] and two distinct vertices [Formula: see text] and [Formula: see text] adjacent if and only if [Formula: see text]. Some connections between annihilating-ideal graphs and zero divisor graphs are given. We characterize the prime ideals (or equivalently maximal ideals) of [Formula: see text] in terms of their degrees as vertices of [Formula: see text]. We also obtain the metric dimension of annihilating-ideal graphs of commutative rings.


1990 ◽  
Vol 33 (3) ◽  
pp. 483-490 ◽  
Author(s):  
I. O. York

In this paper, for R a commutative ring, with identity, of characteristic p, we look at the group G(R) of formal power series with coefficients in R, of the formand the group operation being substitution. The results obtained give the exponent of the quotient groups Gn(R) of this group, n∈ℕ.


1970 ◽  
Vol 13 (4) ◽  
pp. 425-430 ◽  
Author(s):  
T. M. K. Davison

Let R be a commutative Noetherian ring with identity, and let M be a fixed ideal of R. Then, trivially, ring multiplication is continuous in the ilf-adic topology. Let S be a multiplicative system in R, and let j = js: R → S-1R, be the natural map. One can then ask whether (cf. Warner [3, p. 165]) S-1R is a topological ring in ihe j(M)-adic topology. In Proposition 1, I prove this is the case if and only if M ⊂ p(S), whereHence S-1R is a topological ring for all S if and only if M ⊂ p*(R), where


1998 ◽  
Vol 40 (2) ◽  
pp. 223-236 ◽  
Author(s):  
Gary F. Birkenmeier ◽  
Jin Yong Kim ◽  
Jae Keol Park

AbstractLet P be a prime ideal of a ring R, O(P) = {a ∊ R | aRs = 0, for some s ∊ R/P} | and Ō(P) = {x ∊ R | xn ∊ O(P), for some positive integer n}. Several authors have obtained sheaf representations of rings whose stalks are of the form R/O(P). Also in a commutative ring a minimal prime ideal has been characterized as a prime ideal P such that P= Ō(P). In this paper we derive various conditions which ensure that a prime ideal P = Ō(P). The property that P = Ō(P) is then used to obtain conditions which determine when R/O(P) has a unique minimal prime ideal. Various generalizations of O(P) and Ō(P) are considered. Examples are provided to illustrate and delimit our results.


1973 ◽  
Vol 49 ◽  
pp. 127-141 ◽  
Author(s):  
Teruo Kanzaki

Let B be a ring and A a subring of B with the common identity element 1. If the residue A-module B/A is inversible as an A-A- bimodule, i.e. B/A ⊗A HomA(B/A, A) ≈ HomA(B/A, A) ⊗A B/A ≈ A, then B is called a quadratic extension of A. In the case where B and A are division rings, this definition coincides with in P. M. Cohn [2]. We can see easily that if B is a Galois extension of A with the Galois group G of order 2, in the sense of [3], and if is a quadratic extension of A. A generalized crossed product Δ(f, A, Φ, G) of a ring A and a group G of order 2, in [4], is also a quadratic extension of A.


Sign in / Sign up

Export Citation Format

Share Document