Self-assembled Nanometer-Scale ZnS Structure at the CZTS/ZnCdS Heterointerface for High-Efficiency Wide Band Gap Cu2ZnSnS4 Solar Cells

2018 ◽  
Vol 30 (12) ◽  
pp. 4008-4016 ◽  
Author(s):  
Kaiwen Sun ◽  
Jialiang Huang ◽  
Chang Yan ◽  
Aobo Pu ◽  
Fangyang Liu ◽  
...  
Author(s):  
Mengmeng Chen ◽  
Muhammad Akmal Kamarudin ◽  
Ajay K. Baranwal ◽  
Gaurav Kapil ◽  
Teresa S. Ripolles ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4101
Author(s):  
Siyang Liu ◽  
Shuwang Yi ◽  
Peiling Qing ◽  
Weijun Li ◽  
Bin Gu ◽  
...  

The novel and appropriate molecular design for polymer donors are playing an important role in realizing high-efficiency and high stable polymer solar cells (PSCs). In this work, four conjugated polymers (PIDT-O, PIDTT-O, PIDT-S and PIDTT-S) with indacenodithiophene (IDT) and indacenodithieno [3,2-b]thiophene (IDTT) as the donor units, and alkoxy-substituted benzoxadiazole and benzothiadiazole derivatives as the acceptor units have been designed and synthesized. Taking advantages of the molecular engineering on polymer backbones, these four polymers showed differently photophysical and photovoltaic properties. They exhibited wide optical bandgaps of 1.88, 1.87, 1.89 and 1.91 eV and quite impressive hole mobilities of 6.01 × 10−4, 7.72 × 10−4, 1.83 × 10−3, and 1.29 × 10−3 cm2 V−1 s−1 for PIDT-O, PIDTT-O, PIDT-S and PIDTT-S, respectively. Through the photovoltaic test via using PIDT-O, PIDTT-O, PIDT-S and PIDTT-S as donor materials and [6,6]-phenyl-C-71-butyric acid methyl ester (PC71BM) as acceptor materials, all the PSCs presented the high open circuit voltages (Vocs) over 0.85 V, whereas the PIDT-S and PIDTT-S based devices showed higher power conversion efficiencies (PCEs) of 5.09% and 4.43%, respectively. Interestingly, the solvent vapor annealing (SVA) treatment on active layers could improve the fill factors (FFs) extensively for these four polymers. For PIDT-S and PIDTT-S, the SVA process improved the FFs exceeding 71%, and ultimately the PCEs were increased to 6.05%, and 6.12%, respectively. Therefore, this kind of wide band-gap polymers are potentially candidates as efficient electron-donating materials for constructing high-performance PSCs.


2017 ◽  
Vol 10 (6) ◽  
pp. 1443-1455 ◽  
Author(s):  
Seo-Jin Ko ◽  
Quoc Viet Hoang ◽  
Chang Eun Song ◽  
Mohammad Afsar Uddin ◽  
Eunhee Lim ◽  
...  

A new series of wide band gap photovoltaic polymers based on a fluorinated phenylene-alkoxybenzothiadiazole unit with an optical band gap of over 1.90 eV are designed and utilized for high-performance single- and multi-junction bulk heterojunction polymer solar cells.


Solar Energy ◽  
2019 ◽  
Vol 180 ◽  
pp. 207-215 ◽  
Author(s):  
Weimin Li ◽  
Wenjie Li ◽  
Ye Feng ◽  
Chunlei Yang

2015 ◽  
Vol 8 (6) ◽  
pp. 3686-3692 ◽  
Author(s):  
Guangwu Li ◽  
Xue Gong ◽  
Jicheng Zhang ◽  
Yahui Liu ◽  
Shiyu Feng ◽  
...  

Polymer ◽  
2017 ◽  
Vol 125 ◽  
pp. 182-189 ◽  
Author(s):  
Vellaiappillai Tamilavan ◽  
Jihoon Lee ◽  
Rajalingam Agneeswari ◽  
Dal Yong Lee ◽  
Yun Kyung Jung ◽  
...  

2021 ◽  
Vol 868 ◽  
pp. 159253
Author(s):  
Andrea Ruiz-Perona ◽  
Galina Gurieva ◽  
Michael Sun ◽  
Tim Kodalle ◽  
Yudania Sánchez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document