Cu-Catalyzed Asymmetric Hydroboration of Naphthylallylic Compounds for Enantioselective Synthesis of Chiral Boronates

2019 ◽  
Vol 84 (7) ◽  
pp. 4318-4329 ◽  
Author(s):  
Suna Han ◽  
Xin Shen ◽  
Duanyang Kong ◽  
Guofu Zi ◽  
Guohua Hou ◽  
...  
Synlett ◽  
2013 ◽  
Vol 24 (04) ◽  
pp. 437-442 ◽  
Author(s):  
Ping Tian ◽  
Guo-Qiang Lin ◽  
Shu-Sheng Zhang ◽  
Yi-Shuang Zhao

Author(s):  
Xin-Ming Xu ◽  
Ming Xie ◽  
Jiazhu Li ◽  
Mei-Xiang Wang

An exquisite Pybox/Cu(OTf)2-catalyzed asymmetric tandem reaction of tertiary enamides was developed, which enabled the expeditious synthesis of indolizino[8,7-b]indole derivatives in high yield, excellent enantioselectivity and diastereoselectivity.


Synlett ◽  
2020 ◽  
Author(s):  
Shi-Liang Shi ◽  
Yuan Cai

AbstractAsymmetric hydroboration of simple and unactivated terminal alkenes (α-olefins), feedstock chemicals derived from the petrochemical industry, has not been efficiently realized for past decades. Using a bulky ANIPE ligand, we achieved a rare example of highly enantioselective copper-catalyzed Markovnikov hydroboration of α-olefins. The chiral secondary alkylboronic ester products were obtained in moderate to good yields and regioselectivities with excellent enantioselectivities.1 Introduction2 Conditions Optimization3 Substrate Scope4 Application5 Mechanistic Discussion6 Conclusions and Future Directions


2018 ◽  
Author(s):  
Matthew L. Landry ◽  
Grace McKenna ◽  
Noah Burns

A concise and selective synthesis of the dichlorinated meroterpenoid azamerone is described. The paucity of tactics for the synthesis of chiral organochlorides motivated the development of unique strategies for accessing these motifs in enantioenriched forms. The route features a novel enantioselective chloroetherification reaction, a Pd-catalyzed cross-coupling between a quinone diazide and a boronic hemiester, and a late-stage tetrazine [4+2]-cycloaddition/oxidation cascade.


2019 ◽  
Author(s):  
Ming Shang ◽  
Karla S. Feu ◽  
Julien C. Vantourout ◽  
Lisa M. Barton ◽  
Heather L. Osswald ◽  
...  

<div> <div> <div> <p>The union of two powerful transformations, directed C–H activation and decarboxylative cross-coupling, for the enantioselective synthesis of vicinally functionalized alkyl, carbocyclic, and heterocyclic compounds is described. Starting from simple carboxylic acid building blocks, this modular sequence exploits the residual directing group to access more than 50 scaffolds that would be otherwise extremely difficult to prepare. The tactical use of these two transformations accomplishes a formal vicinal difunctionalization of carbon centers in a way that is modular and thus amenable to rapid diversity incorporation. A simplification of routes to known preclinical drug candidates is presented along with the rapid diversification of an antimalarial compound series. </p> </div> </div> </div>


2018 ◽  
Author(s):  
Matthew L. Landry ◽  
Grace McKenna ◽  
Noah Burns

A concise and selective synthesis of the dichlorinated meroterpenoid azamerone is described. The paucity of tactics for the synthesis of chiral organochlorides motivated the development of unique strategies for accessing these motifs in enantioenriched forms. The route features a novel enantioselective chloroetherification reaction, a Pd-catalyzed cross-coupling between a quinone diazide and a boronic hemiester, and a late-stage tetrazine [4+2]-cycloaddition/oxidation cascade.


Sign in / Sign up

Export Citation Format

Share Document