Hydrocarboxyl Radical as a Product of α-Alanine Ultraviolet Photolysis

Author(s):  
Brendan Moore ◽  
Shin Yi Toh ◽  
Y. T. Angel Wong ◽  
Termeh Bashiri ◽  
Alexandra McKinnon ◽  
...  
1997 ◽  
Vol 161 ◽  
pp. 23-47 ◽  
Author(s):  
Louis J. Allamandola ◽  
Max P. Bernstein ◽  
Scott A. Sandford

AbstractInfrared observations, combined with realistic laboratory simulations, have revolutionized our understanding of interstellar ice and dust, the building blocks of comets. Since comets are thought to be a major source of the volatiles on the primative earth, their organic inventory is of central importance to questions concerning the origin of life. Ices in molecular clouds contain the very simple molecules H2O, CH3OH, CO, CO2, CH4, H2, and probably some NH3and H2CO, as well as more complex species including nitriles, ketones, and esters. The evidence for these, as well as carbonrich materials such as polycyclic aromatic hydrocarbons (PAHs), microdiamonds, and amorphous carbon is briefly reviewed. This is followed by a detailed summary of interstellar/precometary ice photochemical evolution based on laboratory studies of realistic polar ice analogs. Ultraviolet photolysis of these ices produces H2, H2CO, CO2, CO, CH4, HCO, and the moderately complex organic molecules: CH3CH2OH (ethanol), HC(= O)NH2(formamide), CH3C(= O)NH2(acetamide), R-CN (nitriles), and hexamethylenetetramine (HMT, C6H12N4), as well as more complex species including polyoxymethylene and related species (POMs), amides, and ketones. The ready formation of these organic species from simple starting mixtures, the ice chemistry that ensues when these ices are mildly warmed, plus the observation that the more complex refractory photoproducts show lipid-like behavior and readily self organize into droplets upon exposure to liquid water suggest that comets may have played an important role in the origin of life.


1981 ◽  
Vol 55 (1-2) ◽  
pp. 9-15 ◽  
Author(s):  
A. Jówko ◽  
S. U. Pavlova ◽  
H. Baj ◽  
B. G. Dzantiev ◽  
M. Foryś

2009 ◽  
Vol 117 (3) ◽  
pp. 338-343 ◽  
Author(s):  
Theodore A. Slotkin ◽  
Frederic J. Seidler ◽  
Changlong Wu ◽  
Emiko A. MacKillop ◽  
Karl G. Linden

1984 ◽  
Vol 37 (3) ◽  
pp. 475 ◽  
Author(s):  
RW Matthews

Solutions of cerium(III)/(IV) and formic acid in 0.4 M sulfuric acid have been photolysed under 254 nm and 365 nm light. Marked differences in the reaction kinetics and quantum yields are observed at the two different wavelengths. At 365 nm, the reactions leading to cerium(IV) reduction are caused almost exclusively by the SO4- radical. The ratio of rate constants, k(SO4- + CeIII)/ k(SO4- + HCOOH), is 116 � 11 and the quantum yield of sulfate radicals, ф(SO4-), is 0.023 � 0.002. At 254 nm, the reactions leading to cerium(IV) reduction are caused mainly by the OH radical, but approximately 35% of the oxidizing radicals formed in the primary photochemical reaction are SO4-. Cerium(III) species, excited at 254 nm, transfer energy to cerium(IV) and this results in an additional yield of OH and SO4- radicals. Fluorescence measurements confirmed the efficiency of the energy transfer reaction. The ratio of rate constants, k(OH+CeIII)/k(OH+HCOOH), is 2.22 � 0.18 and ф(CeIV*) and ф(CelIII*) giving oxidizing radicals are 0.116 � 0.010 and 0.0083 � 0.0008 respectively. Thus about 5 times more total oxidizing radicals are produced from excited cerium(IV) species at 254 nm than at 365 nm.


Sign in / Sign up

Export Citation Format

Share Document