scholarly journals Human Proteome Project Mass Spectrometry Data Interpretation Guidelines 2.1

2016 ◽  
Vol 15 (11) ◽  
pp. 3961-3970 ◽  
Author(s):  
Eric W. Deutsch ◽  
Christopher M. Overall ◽  
Jennifer E. Van Eyk ◽  
Mark S. Baker ◽  
Young-Ki Paik ◽  
...  
2019 ◽  
Vol 18 (12) ◽  
pp. 4108-4116 ◽  
Author(s):  
Eric W. Deutsch ◽  
Lydie Lane ◽  
Christopher M. Overall ◽  
Nuno Bandeira ◽  
Mark S. Baker ◽  
...  

2019 ◽  
Author(s):  
Eric W. Deutsch ◽  
Lydie Lane ◽  
Christopher M. Overall ◽  
Nuno Bandeira ◽  
Mark S. Baker ◽  
...  

AbstractThe Human Proteome Organization’s (HUPO) Human Proteome Project (HPP) developed Mass Spectrometry (MS) Data Interpretation Guidelines that have been applied since 2016. These guidelines have helped ensure that the emerging draft of the complete human proteome is highly accurate and with low numbers of false-positive protein identifications. Here, we describe an update to these guidelines based on consensus-reaching discussions with the wider HPP community over the past year. The revised 3.0 guidelines address several major and minor identified gaps. We have added guidelines for emerging data independent acquisition (DIA) MS workflows and for use of the new Universal Spectrum Identifier (USI) system being developed by the HUPO Proteomics Standards Initiative (PSI). In addition, we discuss updates to the standard HPP pipeline for collecting MS evidence for all proteins in the HPP, including refinements to minimum evidence. We present a new plan for incorporating MassIVE-KB into the HPP pipeline for the next (HPP 2020) cycle in order to obtain more comprehensive coverage of public MS data sets. The main checklist has been reorganized under headings and subitems and related guidelines have been grouped. In sum, Version 2.1 of the HPP MS Data Interpretation Guidelines has served well and this timely update to version 3.0 will aid the HPP as it approaches its goal of collecting and curating MS evidence of translation and expression for all predicted ∼20,000 human proteins encoded by the human genome.Abstract Figure


Author(s):  
In Kwon Choi ◽  
Eroma Abeysinghe ◽  
Eric Coulter ◽  
Suresh Marru ◽  
Marlon Pierce ◽  
...  

2019 ◽  
Author(s):  
Rebecca Beveridge ◽  
Johannes Stadlmann ◽  
Josef M. Penninger ◽  
Karl Mechtler

We have created synthetic peptide libraries to benchmark crosslinking mass spectrometry search engines for different types of crosslinker. The unique benefit of using a library is knowing which identified crosslinks are true and which are false. Here we have used mass spectrometry data generated from measurement of the peptide libraries to evaluate the most frequently applied search algorithms in crosslinking mass-spectrometry. When filtered to an estimated false discovery rate of 5%, false crosslink identification ranged from 5.2% to 11.3% for search engines with inbuilt validation strategies for error estimation. When different external validation strategies were applied to one single search output, false crosslink identification ranged from 2.4% to a surprising 32%, despite being filtered to an estimated 5% false discovery rate. Remarkably, the use of MS-cleavable crosslinkers did not reduce the false discovery rate compared to non-cleavable crosslinkers, results from which have far-reaching implications in structural biology. We anticipate that the datasets acquired during this research will further drive optimisation and development of search engines and novel data-interpretation technologies, thereby advancing our understanding of vital biological interactions.


2020 ◽  
Vol 34 (23) ◽  
Author(s):  
Daniel Ortiz ◽  
Natalia Gasilova ◽  
Francisco Sepulveda ◽  
Luc Patiny ◽  
Paul J. Dyson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document