tandem mass spectrometry
Recently Published Documents





2022 ◽  
Vol 8 ◽  
Hae-Ni Jung ◽  
Da-Hee Park ◽  
Yeon-Jae Choi ◽  
Se-Hyeong Kang ◽  
Hee-Jung Cho ◽  

The accumulation of antimicrobial residues in edible animal products and aquaculture products could pose health concerns to unsuspecting consumers. Hence, this study aimed to develop a validated method for simultaneous quantification of chloramphenicol (CAP), thiamphenicol (TAP), florfenicol (FF), and florfenicol amine (FFA) in beef, pork, chicken, shrimp, eel, and flatfish using a quick, easy, cheap, effective, rugged, and safe (QuEChERS) extraction method coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Primary-secondary amine (PSA) and MgSO4 were used for sample purification. The analytes were separated on a reversed-phase analytical column. The coefficients of determination for the linear matrix-matched calibration curves were ≥0.9941. Recovery rates ranged between 64.26 and 116.51% for the four analytes with relative standard deviations (RSDs) ≤ 18.05%. The calculated limits of detection (LODs) and limits of quantification (LOQs) were 0.005–3.1 and 0.02–10.4 μg/kg, respectively. The developed method was successfully applied for monitoring samples obtained from local markets in Seoul, Republic of Korea. The target residues were not detected in any tested matrix. The designed method was versatile, sensitive, and proved suitable for quantifying residues in animal-derived products.

Toxics ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 27
Javier Zurita ◽  
Hitesh V. Motwani ◽  
Leopold L. Ilag ◽  
Vassilis L. Souliotis ◽  
Soterios A. Kyrtopoulos ◽  

Electrophilic diol epoxide metabolites are involved in the carcinogenicity of benzo[a]pyrene, one of the widely studied polycyclic aromatic hydrocarbons (PAHs). The exposure of humans to this PAH can be assessed by measuring stable blood protein adducts, such as to histidine and lysine in serum albumin, from their reactive metabolites. In this respect, measurement of the adducts originating from the genotoxic (+)-anti-benzo[a]pyrene diol epoxide is of interest. However, these are difficult to measure at such low levels as are expected in humans generally exposed to benzo[a]pyrene from air pollution and the diet. The analytical methods detecting PAH-biomarkers still suffer from low selectivity and/or detectability to enable generation of data for calculation of in vivo doses of specific stereoisomers, for evaluation of risk factors and assessing risk from exposures to PAH. Here, we suggest an analytical methodology based on high-pressure liquid chromatography (HPLC) coupled to high-resolution tandem mass spectrometry (MS) to lower the detection limits as well as to increase the selectivity with improvements in both chromatographic separation and mass determination. Method development was performed using serum albumin alkylated in vitro by benzo[a]pyrene diol epoxide isomers. The (+)-anti-benzo[a]pyrene diol epoxide adducts could be chromatographically resolved by using an HPLC column with a pentafluorophenyl stationary phase. Interferences were further diminished by the high mass accuracy and resolving power of Orbitrap MS. The achieved method detection limit for the (+)-anti-benzo[a]pyrene diol epoxide adduct to histidine was approximately 4 amol/mg serum albumin. This adduct as well as the adducts to histidine from (−)-anti- and (+/−)-syn-benzo[a]pyrene diol epoxide were quantified in the samples from benzo[a]pyrene-exposed mice. Corresponding adducts to lysine were also quantified. In human serum albumin, the anti-benzo[a]pyrene diol epoxide adducts to histidine were detected in only two out of twelve samples and at a level of approximately 0.1 fmol/mg.

Sign in / Sign up

Export Citation Format

Share Document