scholarly journals Theoretical Study of O-CH3 Bond Dissociation Enthalpy in Anisole Systems

ACS Omega ◽  
2021 ◽  
Author(s):  
Rui Li ◽  
Tianshu Du ◽  
Jingxing Liu ◽  
Adelia J. A. Aquino ◽  
Jianyu Zhang
2018 ◽  
Vol 29 (5) ◽  
pp. 1265-1272 ◽  
Author(s):  
Luis Hernández-García ◽  
Jacinto Sandoval-Lira ◽  
Sharon Rosete-Luna ◽  
Guillermo Niño-Medina ◽  
Mario Sanchez

1984 ◽  
Vol 16 (8) ◽  
pp. 703-709 ◽  
Author(s):  
Steven W. Govorchin ◽  
Adli S. Kana'an ◽  
Joseph M. Kanamueller

2014 ◽  
Vol 118 (46) ◽  
pp. 11026-11032 ◽  
Author(s):  
Ricardo G. Simões ◽  
Filipe Agapito ◽  
Hermínio P. Diogo ◽  
Manuel E. Minas da Piedade

1984 ◽  
Vol 62 (9) ◽  
pp. 1850-1859 ◽  
Author(s):  
A. Martin de P. Nicholas ◽  
Donald R. Arnold

The relationship between radical stability and bond dissociation enthalpy (BDH) is reexamined. It is shown that relative stabilization energies of radicals are not equal to relative BDH values. Net stabilization energies of radicals, SE0[R•, RX] are defined relative to the R components of closed shell species RX (R(RX)). These components are chosen such that they contain the same (or, approximately the same) net charge as that of the radical (R•). The following results, relative to R = C2H5, were obtained: R•, SE0[R•, RX](kJ mol−1) for X = R (i.e., the dimer RR), CH3, and H; CH3•, 23, 32, 37; n-C3H7•, −2, −2, −3; i-C3H7•, −9, −14, −19; t-C4H9•, −25, −32, −38. These results show that the methyl radical is more destabilized and the n-propyl-, i-propyl-, and tert-butyl radicals are more stabilized than is predicted from the corresponding relative BDH (R—X) values. The intrinsic C—H bond strengths of chosen alkanes are considered. Relative to the C—H bond in ethane, the bond in methane is found to be weaker by 8.12 kJ mol−1 and the primary and secondary bonds in propane and the tertiary bond in methyl propane are stronger by 2.56, 7.98, and 17.12 kJ mol−1 respectively.


2017 ◽  
Vol 2017 ◽  
pp. 1-5
Author(s):  
Maximiliano Martínez-Cifuentes ◽  
Boris Weiss-López ◽  
Ramiro Araya-Maturana

The mandatory presence of a chlorine atom on the aromatic ring of 6-hydroxy-3-formyl angular chromones, on the respiration inhibition of mammary carcinoma mouse, is explained through a computational study of these compounds. This study analyzes the reactivity of the neutral molecules and their free radicals, in gas phase and with water solvation, incorporated by the polarizable continuum medium (PCM) approach. Electrophilic reactivities were evaluated using Fukui (f+) and Parr (P+) functions. The stabilities of radical species formed by the abstraction of a hydrogen atom from the O-H bond were evaluated by bond dissociation enthalpy (BDE) and spin density (SD) calculations. This study has potential implications for the design of chromone analogues as anticancer compounds.


Sign in / Sign up

Export Citation Format

Share Document