Selective Activation of Inhibitory G-Protein .alpha.-Subunits by Partial Agonists of the human 5-HT1A Receptor. [Erratum to document cited in CA120:209166]

Biochemistry ◽  
1994 ◽  
Vol 33 (37) ◽  
pp. 11404-11404 ◽  
Author(s):  
Thomas W. Gettys ◽  
Timothy A. Fields ◽  
John R. Raymond
Biochemistry ◽  
1994 ◽  
Vol 33 (14) ◽  
pp. 4283-4290 ◽  
Author(s):  
Thomas W. Gettys ◽  
Timothy A. Fields ◽  
John R. Raymond

2021 ◽  
Author(s):  
Sijie Huang ◽  
peiyu Xu ◽  
Yangxia Tan ◽  
Chongzhao You ◽  
Yumu Zhang ◽  
...  

Migraine headache has become global pandemics and is the number one reason of work day loss. The most common drugs for anti-migraine are the triptan class of drugs that are agonists for serotonin receptors 5-HT1B and 5-HT1D. However, these drugs have side effects related to vasoconstriction that could have fatal consequences of ischemic heart disease and myocardial infarction. Lasmiditan is a new generation of anti-migraine drug that selectively binds to the serotonin receptor 5-HT1F due to its advantage over the tripan class of anti-migraine drugs. Here we report the cryo-EM structure of the 5-HT1F in complex with Lasmiditan and the inhibitory G protein heterotrimer. The structure reveals the mechanism of 5-HT1F-selective activation by Lasmiditan and provides a template for rational design of anti-migraine drugs.


1994 ◽  
Vol 269 (7) ◽  
pp. 4713-4716 ◽  
Author(s):  
H. Hallak ◽  
L. Muszbek ◽  
M. Laposata ◽  
E. Belmonte ◽  
L.F. Brass ◽  
...  

1992 ◽  
Vol 284 (2) ◽  
pp. 321-326 ◽  
Author(s):  
G Ahnert-Hilger ◽  
U Wegenhorst ◽  
B Stecher ◽  
K Spicher ◽  
W Rosenthal ◽  
...  

1. In bovine adrenal chromaffin cells made permeable either to molecules less than or equal to 3 kDa with alphatoxin or to proteins less than or equal to 150 kDa with streptolysin O, the GTP analogues guanosine 5′-[beta gamma-imido]triphosphate (p[NH]ppG) and guanosine 5′-[gamma-thio]triphosphate (GTP[S]) differently modulated Ca(2+)-stimulated exocytosis. 2. In alphatoxin-permeabilized cells, p[NH]ppG up to 20 microM activated Ca(2+)-stimulated exocytosis. Higher concentrations had little or no effect. At a free Ca2+ concentration of 5 microM, 7 microM-p[NH]ppG stimulated exocytosis 6-fold. Increasing the free Ca2+ concentration reduced the effect of p[NH]ppG. Pretreatment of the cells with pertussis toxin prevented the activation of the Ca(2+)-stimulated exocytosis by p[NH]ppG. 3. In streptolysin O-permeabilized cells, p[NH]ppG did not activate, but rather inhibited Ca(2+)-dependent catecholamine release under all conditions studied. In the soluble cytoplasmic material that escaped during permeabilization with streptolysin O, different G-protein alpha-subunits were detected using an appropriate antibody. Around 15% of the cellular alpha-subunits were detected in the supernatant of permeabilized control cells. p[NH]ppG or GTP[S] stimulated the release of alpha-subunits 2-fold, causing a loss of about 30% of the cellular G-protein alpha-subunits under these conditions. Two of the alpha-subunits in the supernatant belonged to the G(o) type, as revealed by an antibody specific for G(o) alpha. 4. GTP[S], when present alone during stimulation with Ca2+, activated exocytosis in a similar manner to p[NH]ppG. Upon prolonged incubation, GTP[S], in contrast to p[NH]ppG, inhibited Ca(2+)-induced exocytosis from cells permeabilized by either of the pore-forming toxins. This effect was resistant to pertussin toxin. 5. The p[NH]ppG-induced activation of Ca(2+)-stimulated release from alphatoxin-permeabilized chromaffin cells may be attributed to one of the heterotrimeric G-proteins lost during permeabilization with streptolysin O. The inhibitory effect of GTP[S] on exocytosis is apparently not mediated by G-protein alpha-subunits, but by another GTP-dependent process still occurring after permeabilization with streptolysin O.


Sign in / Sign up

Export Citation Format

Share Document