Critical Role of cAMP-Dependent Protein Kinase Anchoring to the L-Type Calcium Channel Cav1.2 via A-Kinase Anchor Protein 150 in Neurons†

Biochemistry ◽  
2007 ◽  
Vol 46 (6) ◽  
pp. 1635-1646 ◽  
Author(s):  
Duane D. Hall ◽  
Monika A. Davare ◽  
Mei Shi ◽  
Margaret L. Allen ◽  
Michael Weisenhaus ◽  
...  
1995 ◽  
Vol 309 (1) ◽  
pp. 119-125 ◽  
Author(s):  
J L Rosa ◽  
J X Pérez ◽  
F Ventura ◽  
A Tauler ◽  
J Gil ◽  
...  

The effect of cyclic AMP (cAMP)-dependent phosphorylation and ADP-ribosylation on the activities of the rat liver bifunctional enzyme, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2), was investigated in order to determine the role of the N-terminus in covalent modification of the enzyme. The bifunctional enzyme was demonstrated to be a substrate in vitro for arginine-specific ADP-ribosyltransferase: 2 mol of ADP-ribose was incorporated per mol of subunit. The Km values for NAD+ and PFK-2/FBPase-2 were 14 microM and 0.4 microM respectively. A synthetic peptide (Val-Leu-Gln-Arg-Arg-Arg-Gly-Ser-Ser-Ile-Pro-Gln) corresponding to the site phosphorylated by cAMP-dependent protein kinase was ADP-ribosylated on all three arginine residues. Analysis of ADP-ribosylation of analogue peptides containing only two arginine residues, with the third replaced by alanine, revealed that ADP-ribosylation occurred predominantly on the two most C-terminal arginine residues. Sequencing of the ADP-ribosylated native enzyme also demonstrated that the preferred sites were at Arg-29 and Arg-30, which are just N-terminal to Ser-32, whose phosphorylation is catalysed by cAMP-dependent protein kinase (PKA). ADP-ribosylation was independent of the phosphorylation state of the enzyme. Furthermore, ADP-ribosylation of the enzyme decreased its recognition by liver-specific anti-bifunctional-enzyme antibodies directed to its unique N-terminal region. ADP-ribosylation of PFK-2/FBPase-2 blocked its phosphorylation by PKA, and decreased its PFK-2 activity, but did not alter FBPase-2 activity. In contrast, cAMP-dependent phosphorylation inhibited the kinase and activated the bisphosphatase. These results demonstrate that ADP-ribosylation of arginine residues just N-terminal to the site phosphorylated by PKA modulate PFK-2 activity by an electrostatic and/or steric mechanism which does not involved uncoupling of N- and C-terminal interactions as seen with cAMP-dependent phosphorylation.


1992 ◽  
Vol 3 (11) ◽  
pp. 1215-1228 ◽  
Author(s):  
S B Glantz ◽  
J A Amat ◽  
C S Rubin

In mammalian brain, physiological signals carried by cyclic AMP (cAMP) seem to be targeted to effector sites via the tethering of cAMP-dependent protein kinase II beta (PKAII beta) to intracellular structures. Recently characterized A kinase anchor proteins (AKAPs) are probable mediators of the sequestration of PKAII beta because they contain a high-affinity binding site for the regulatory subunit (RII beta) of the kinase and a distinct intracellular targeting domain. To establish a cellular basis for this targeting mechanism, we have employed immunocytochemistry to 1) identify the types of neurons that are enriched in AKAPs, 2) determine the primary intracellular location of the anchor protein, and 3) demonstrate that an AKAP and RII beta are coenriched and colocalized in neurons that utilize the adenylate cyclase-cyclic AMP-dependent protein kinase (PKA) signaling pathway. Antibodies directed against rat brain AKAP 150 were used to elucidate the regional, cellular and intracellular distribution of a prototypic anchor protein in the CNS. AKAP 150 is abundant in Purkinje cells and in neurons of the olfactory bulb, basal ganglia, cerebral cortex, and other forebrain regions. In contrast, little AKAP 150 is detected in neurons of the thalamus, hypothalamus, midbrain, and hindbrain. A high proportion of total AKAP 150 is concentrated in primary branches of dendrites, where it is associated with microtubules. We also discovered that the patterns of accumulation and localization of RII beta (and PKAII beta) in brain are similar to those of AKAP 150. The results suggest that bifunctional AKAP 150 tethers PKAII beta to the dendritic cytoskeleton, thereby creating a discrete target site for the reception and propagation of signals carried by cAMP.


Sign in / Sign up

Export Citation Format

Share Document