Density Functional Theory and Beyond for Band-Gap Screening: Performance for Transition-Metal Oxides and Dichalcogenides

2013 ◽  
Vol 9 (7) ◽  
pp. 2950-2958 ◽  
Author(s):  
Wenqing Li ◽  
Christian F. J. Walther ◽  
Agnieszka Kuc ◽  
Thomas Heine
2009 ◽  
Vol 16 (04) ◽  
pp. 525-532
Author(s):  
ZI-RONG TANG

The viability of facile oxidation and cycloaddition of fullerene C 60 with ruthenium tetraoxide ( RuO 4) has been confirmed by means of density functional theory calculations. Owing to the powerful capability of RuO 4 as an oxidant, the addition process has been found to occur readily in the absence of organic base as a catalyst, which is in remarkable contrast to the base-catalyzed osmylation of C 60 with osmium tetraoxide ( OsO 4). Significantly, we have found that boron can be employed as an effective promoter for enhancing the cycloaddition and complexation of transition metal oxides, e.g. RuO 4 and OsO 4, with C 60, in which the base is not needed at all. Our results suggest that boron doping into the lattice of fullerenes and carbon nanotubes would provide a well-defined approach for anchoring transition metal oxides.


2021 ◽  
Vol 197 ◽  
pp. 110613
Author(s):  
Ijeoma Cynthia Onyia ◽  
Stella Ogochukwu Ezeonu ◽  
Dmitri Bessarabov ◽  
Kingsley Onyebuchi Obodo

Sign in / Sign up

Export Citation Format

Share Document