Effects of Bipolar Plate Material and Impurities in Reactant Gases on PEM Fuel Cell Performance

2007 ◽  
Vol 46 (26) ◽  
pp. 8898-8905 ◽  
Author(s):  
Hazem Tawfik ◽  
Kamel El-Khatib ◽  
Yue Hung ◽  
Devinder Mahajan
Membranes ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 146
Author(s):  
Tabbi Wilberforce ◽  
Oluwatosin Ijaodola ◽  
Ogungbemi Emmanuel ◽  
James Thompson ◽  
Abdul Ghani Olabi ◽  
...  

A low cost bipolar plate materials with a high fuel cell performance is important for the establishment of Proton Exchange Membrane (PEM ) fuel cells into the competitive world market. In this research, the effect of different bipolar plates material such as Aluminum (Al), Copper (Cu), and Stainless Steel (SS) of a single stack of proton exchange membrane (PEM) fuel cells was investigated both numerically and experimentally. Firstly, a three dimensional (3D) PEM fuel cell model was developed, and simulations were conducted using commercial computational fluid dynamics (CFD) ANSYS FLUENT to examine the effect of each bipolar plate materials on cell performance. Along with cell performance, significant parameters distributions like temperature, pressure, a mass fraction of hydrogen, oxygen, and water is presented. Then, an experimental study of a single cell of Al, Cu, and SS bipolar plate material was used in the verification of the numerical investigation. Finally, polarization curves of numerical and experimental results was compared for validation, and the result shows that Al serpentine bipolar plate material performed better than Cu and SS materials. The outcome of the investigation was in tandem to the fact that due to adsorption on metal surfaces, hydrogen molecules is more stable on Al surface than Cu and SS surfaces.


2021 ◽  
Author(s):  
Srinivasa Reddy Badduri ◽  
Ramesh Siripuram ◽  
Naga Srinivasulu G ◽  
Srinivasa Rao S

Author(s):  
M. Minutillo ◽  
E. Jannelli ◽  
F. Tunzio

The main objective of this study is to evaluate the performance of a proton exchange membrane (PEM) fuel cell generator operating for residential applications. The fuel cell performance has been evaluated using the test bed of the University of Cassino. The experimental activity has been focused to evaluate the performance in different operating conditions: stack temperature, feeding mode, and fuel composition. In order to use PEM fuel cell technology on a large scale, for an electric power distributed generation, it could be necessary to feed fuel cells with conventional fuel, such as natural gas, to generate hydrogen in situ because currently the infrastructure for the distribution of hydrogen is almost nonexistent. Therefore, the fuel cell performance has been evaluated both using pure hydrogen and reformate gas produced by a natural gas reforming system.


2020 ◽  
Vol 167 (8) ◽  
pp. 084501
Author(s):  
Tatyana Reshetenko ◽  
Günter Randolf ◽  
Madeleine Odgaard ◽  
Barr Zulevi ◽  
Alexey Serov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document