Biohydrogen and Methane Production from Cheese Whey in a Two-Stage Anaerobic Process

2008 ◽  
Vol 47 (15) ◽  
pp. 5227-5233 ◽  
Author(s):  
Georgia Antonopoulou ◽  
Katerina Stamatelatou ◽  
Nikolaos Venetsaneas ◽  
Michael Kornaros ◽  
Gerasimos Lyberatos
2011 ◽  
Vol 64 (2) ◽  
pp. 367-374 ◽  
Author(s):  
C. B. Cota-Navarro ◽  
J. Carrillo-Reyes ◽  
G. Davila-Vazquez ◽  
F. Alatriste-Mondragón ◽  
E. Razo-Flores

The feasibility of integrating biological hydrogen and methane production in a two-stage process using mixed cultures and cheese whey powder (CWP) as substrate was studied. The effect of operational parameters such as hydraulic retention time (HRT) and organic loading rate (OLR) on the volumetric hydrogen (VHPR) and methane (VMPR) production rates was assessed. The highest VHPR was 28 L H2/L/d, obtained during stable operation in a CSTR at HRT and OLR of 6 h and 142 g lactose/L/d, respectively. Moreover, hydrogen (13 L/L/d) was produced even at HRT as low as 3.5 h and OLR of 163 g lactose/L/d, nonetheless, the reactor operation was not stable. Regarding methane production in an UASB reactor, the acidified effluent from the hydrogen-producing bioreactor was efficiently treated obtaining COD removals above 90% at OLR and HRT of 20 g COD/L/d and 6 h, respectively. The two-stage process for continuous production of hydrogen and methane recovered over 70% of the energy present in the substrate. This study demonstrated that hydrogen production can be efficiently coupled to methane production in a two-stage system and that CWP is an adequate substrate for energy production.


2013 ◽  
Vol 128 ◽  
pp. 779-783 ◽  
Author(s):  
Lorenzo Bertin ◽  
Selene Grilli ◽  
Alessandro Spagni ◽  
Fabio Fava

2012 ◽  
Vol 13 (2) ◽  
pp. 118-125 ◽  
Author(s):  
Prawit Kongjan ◽  
Sompong O-Thong ◽  
Irini Angelidaki

Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5423
Author(s):  
Margarita Andreas Dareioti ◽  
Aikaterini Ioannis Vavouraki ◽  
Konstantina Tsigkou ◽  
Michael Kornaros

The growing interest in processes that involve biomass conversion to renewable energy, such as anaerobic digestion, has stimulated research in this field in order to assess the optimum conditions for biogas production from abundant feedstocks, like agro-industrial wastes. Anaerobic digestion is an attractive process for the decomposition of organic wastes via a complex microbial consortium and subsequent conversion of metabolic intermediates to hydrogen and methane. The present study focused on the exploitation of liquid cow manure (LCM) and cheese whey (CW) as noneasily and easily biodegradable sources, respectively, using continuous stirred-tank reactors for biogas production, and a comparison was presented between single- and two-stage anaerobic digestion systems. No significant differences were found concerning LCM treatment, in a two-stage system compared to a single one, concluding that LCM can be treated by implementing a single-stage process, as a recalcitrant substrate, with the greatest methane production rate of 0.67 L CH4/(LR·d) at an HRT of 16 d. On the other hand, using the easily biodegradable CW as a monosubstrate, the two-stage process was considered a better treatment system compared to a single one. During the single-stage process, operational problems were observed due to the limited buffering capacity of CW. However, the two-stage anaerobic digestion of CW produced a stable methane production rate of 0.68 L CH4/(LR·d) or 13.7 L CH4/Lfeed, while the total COD was removed by 76%.


2021 ◽  
pp. 107972
Author(s):  
Jack Rincón-Pérez ◽  
Lourdes B. Celis ◽  
Marcia Morales ◽  
Felipe Alatriste-Mondragón ◽  
Aida Tapia-Rodríguez ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3611
Author(s):  
Sandra Gonzalez-Piedra ◽  
Héctor Hernández-García ◽  
Juan M. Perez-Morales ◽  
Laura Acosta-Domínguez ◽  
Juan-Rodrigo Bastidas-Oyanedel ◽  
...  

In this paper, a study on the feasibility of the treatment of raw cheese whey by anaerobic co-digestion using coffee pulp residues as a co-substrate is presented. It considers raw whey generated in artisanal cheese markers, which is generally not treated, thus causing environmental pollution problems. An experimental design was carried out evaluating the effect of pH and the substrate ratio on methane production at 35 °C (i.e., mesophilic conditions). The interaction of the parameters on the co-substrate degradation and the methane production was analyzed using a response surface analysis. Furthermore, two kinetic models were proposed (first order and modified Gompertz models) to determine the dynamic profiles of methane yield. The results show that co-digestion of the raw whey is favored at pH = 6, reaching a maximum yield of 71.54 mLCH4 gVSrem−1 (31.5% VS removed) for raw cheese whey and coffee pulp ratio of 1 gVSwhey gVSCoffe−1. The proposed kinetic models successfully fit the experimental methane production data, the Gompertz model being the one that showed the best fit. Then, the results show that anaerobic co-digestion can be used to reduce the environmental impact of raw whey. Likewise, the methane obtained can be integrated into the cheese production process, which could contribute to reducing the cost per energy consumption.


Author(s):  
Arini Wresta ◽  
Neni Sintawardani ◽  
Sanggono Adisasmito ◽  
Tonni Agustiono Kurniawan ◽  
Tjandra Setiadi

2009 ◽  
Vol 100 (15) ◽  
pp. 3713-3717 ◽  
Author(s):  
Nikolaos Venetsaneas ◽  
Georgia Antonopoulou ◽  
Katerina Stamatelatou ◽  
Michael Kornaros ◽  
Gerasimos Lyberatos

Sign in / Sign up

Export Citation Format

Share Document