The vanadyl ion as an electron paramagnetic resonance probe of micelle-liquid crystal systems

1976 ◽  
Vol 80 (17) ◽  
pp. 1892-1898 ◽  
Author(s):  
Robert F. Campbell ◽  
Melvin W. Hanna
1996 ◽  
Vol 51 (4) ◽  
pp. 245-248
Author(s):  
Geetha Jayaram ◽  
V. G. Krishnan

Abstract Electron Paramagnetic Resonance (EPR) studies have been carried out on the vanadyl (VO2) ion doped in single crystals of ZnTiF6 • 6H2O. The spectra indicate the presence of one set of eight lines characteristic of only one occupation site. The V-O bond orientation is along one of the three Zn-H2O bond directions in the trigonally distorted [Zn(H2O)6] octahedra. This behaviour is unlike that reported for vanadyl ion substituting for the M(H2O)6 sites in the Tutton salts, alums and AlCl3 • 6H2O. The Spin-Hamiltonian and bonding parameters for the [VO(H2O)5] complex have been evaluated. The hyperfine linewidths are 0.8 mT at 300 K and 77 K. No proton superhyperfine structure was observed at both these temperatures.


1997 ◽  
Vol 52 (12) ◽  
pp. 849-854 ◽  
Author(s):  
Metin Yavuz ◽  
Hüseyin Kalkan ◽  
Ahmet Bulut ◽  
Şehriman Atalay ◽  
Emin Öztekin

The results of an electron paramagnetic resonance (EPR) study of vanadyl ion VO2+ doped in single crystals of Ba(ClO4)2 - 3 H2O are reported. The spectra indicated the presence of two substitutional and interstitial sites depending on the orientation. The spin-Hamiltonian parameters were determined from single crystal and powder EPR data. These parameters were found to be axial symmetric for the powder sample, whereas they showed deviations from axial symmetry for the single crystal


1980 ◽  
Vol 58 (2) ◽  
pp. 567-570
Author(s):  
A. S. N. Rao ◽  
P. N. Murty ◽  
C. R. K. Murty ◽  
T. Rs. Reddy ◽  
B. Bahadur

Sign in / Sign up

Export Citation Format

Share Document