calcium formate
Recently Published Documents


TOTAL DOCUMENTS

92
(FIVE YEARS 25)

H-INDEX

15
(FIVE YEARS 3)

2022 ◽  
Vol 314 ◽  
pp. 125611
Author(s):  
Xunqin Ben ◽  
Linhua Jiang ◽  
Ming-Zhi Guo ◽  
Yuanyuan Meng ◽  
Lei Chen ◽  
...  

2021 ◽  
Vol 13 (16) ◽  
pp. 8990
Author(s):  
Beyza Kardogan ◽  
Kadir Sekercioglu ◽  
Yusuf Çagatay Erşan

Microbially induced calcium carbonate precipitation (MICP) can be mentioned among the popular approaches to develop a self-healing concrete. The production of dissolved inorganic carbon through microbial activity is the main precursor for MICP in concrete and it is limited by the bioavailability of the nutrients. When nutrients are added to the mortar as admixtures, their bioavailability becomes more significant for crack repair because nutrients disperse in the mortar and considerable fraction stays far from a single crack. Therefore, the determination of bioavailability of nutrients and its variation with the initial nutrient content and crack age is essential to optimize a recipe for bacteria-based self-healing concrete. This study presents the optimum nutrient content defined for nitrate-reduction-based self-healing bioconcrete. In the tests, calcium nitrate (CN) and calcium formate (CF) were combined with a CF:CN w/w ratio of 2.50. Mortar properties and bioavailability of nutrients were analysed at different nutrient doses. Moreover, the bioavailability of nutrients at different crack ages changing between 3 and 56 days was monitored. Finally, resuscitation, microbial activity and the MICP performance of nitrate reducing biogranules were tested at defined nutrient bioavailabilties. The optimum nutrient content was determined as 7.00% (CF 5.00% and CN 2.00%). The leaching rates of formate ions were twice the leaching rate of the nitrate ions at similar initial concentrations, which led to a bioavailable HCOO−/NO3-N ratio of 23 g/g in cracked mortar. Under optimum nutrient conditions, the CaCO3 precipitation yield of nitrate reducing biogranules was recorded as 1.5 g CaCO3/g HCOO− which corresponded to 68% C precipitation efficiency.


2021 ◽  
Vol 289 ◽  
pp. 122995
Author(s):  
Lei. Chen ◽  
LinHua. Jiang ◽  
Xing Liu ◽  
Peng Xu ◽  
Yuanyuan Meng ◽  
...  

Minerals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 448
Author(s):  
Nikita V. Chukanov ◽  
Cesar Menor-Salvan ◽  
Vladislav V. Gurzhiy ◽  
Alina R. Izatulina ◽  
Igor V. Pekov ◽  
...  

Centimeter-sized crystals of orthorhombic calcium formate, α-Ca(HCO2)2 from Alkali Lake, Oregon, USA have been studied by means of powder and single-crystal X-ray diffraction analysis, infrared, and Raman spectroscopy. Based on the data on carbon isotope abundance in calcium formate and associated minerals, it was concluded that the formation of α-Ca(HCO2)2 may be a result of a combination of two factors: lake microbial metabolism and anthropogenic pollution with Agent Orange. Possible causes of stability of the low-density tetragonal β-Ca(HCO2)2 polymorph (formicaite) in boron ores are discussed.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Gerhard Eggert ◽  
Andrea Fischer

AbstractMetal formates sometimes occur as degradation products on heritage objects due to the use of wood products or other sources of formic acid and formaldehyde. They are often related to alkaline surfaces which transform formaldehyde directly into formate. The dominant role of formate on alkaline surfaces, for example in glass-induced metal corrosion (GIM) or calcium carbonate degradation, was explored in the Stuttgart research on rare heritage corrosion products. This review discusses these findings together with those from the literature: ocurrences of sodium and potassium formate on glass, calcium formate and calcium acetate-formate phases on calcareous materials, magnesium formate on Sorel cement and dolomitic sandstone, lead formate on metal and pigments, cadmium formate on coated objects, as well as various copper and zinc formates on copper alloys. In the latter cases, formates dominate as glass-induced metal corrosion products. The formation of formates constitutes irreversible damage, degrading the material of heritage objects. Therefore, preventive conservation needs to remove all sources of carbonyl pollutants in order to avoid such corrosion.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 765
Author(s):  
Samuel Gage ◽  
Prashant Sharan ◽  
Craig Turchi ◽  
Judy Netter

This work examines formate salts as potential phase change materials (PCMs) for middle-high temperature (≤250 °C) latent heat thermal energy storage applications. The thermophysical properties of three formate salts were characterized: pure sodium formate and binary blends of sodium/potassium formate and sodium/calcium formate. The stability of formate PCM’s was evaluated by thermal cycling using differential scanning calorimetry where sodium formate and sodium/potassium formate appeared stable over 600 cycles, while sodium/calcium formate exhibited a monotonic decrease in heat of fusion over the test period. A longer test with sodium formate led to gas release and decomposition of the salt. FTIR analysis of the PCM showed degradation of formate to oxalate. T-history experiments with 50-g PCM quantities demonstrated a bulk supercooling of only 2–3 °C for these salts. Thermal conductivity enhancement of over 700% was achieved by embedding aluminum in the solid PCM. Finally, mild carbon steel was immersed in molten sodium formate for up to 2000 h. Sodium formate was found to be non-corrosive, as calculated by mass loss and confirmed by cross-sectional high-resolution microscopy. FTIR analysis of the PCM after 2000 h shows oxidation at the free surface, while the bulk PCM remained unchanged, further indicating a need to protect the formate from atmospheric exposure when used as a PCM.


2021 ◽  
pp. 1-13
Author(s):  
Zhiyuan Zhou ◽  
Massoud Sofi ◽  
Aocheng Zhong ◽  
Amin Shahpasandi ◽  
Marvel Cham Sarabia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document