An Isosparteine Derivative for Stereochemical Assignment of Stereogenic (Chiral) Methyl Groups Using Tritium NMR:  Theory and Experiment

2005 ◽  
Vol 127 (1) ◽  
pp. 412-420 ◽  
Author(s):  
Benjamin D. Allen ◽  
Jean-Christophe Cintrat ◽  
Nicolas Faucher ◽  
Patrick Berthault ◽  
Bernard Rousseau ◽  
...  
ChemInform ◽  
1990 ◽  
Vol 21 (11) ◽  
Author(s):  
F. A. L. ANET ◽  
D. J. O'LEARY ◽  
J. M. BEALE ◽  
H. G. FLOSS

1989 ◽  
Vol 111 (24) ◽  
pp. 8935-8936 ◽  
Author(s):  
Frank A. L. Anet ◽  
Daniel J. O'Leary ◽  
John M. Beale ◽  
Heinz G. Floss

Author(s):  
Gertrude F. Rempfer

I became involved in electron optics in early 1945, when my husband Robert and I were hired by the Farrand Optical Company. My husband had a mathematics Ph.D.; my degree was in physics. My main responsibilities were connected with the development of an electrostatic electron microscope. Fortunately, my thesis research on thermionic and field emission, in the late 1930s under the direction of Professor Joseph E. Henderson at the University of Washington, provided a foundation for dealing with electron beams, high vacuum, and high voltage.At the Farrand Company my co-workers and I used an electron-optical bench to carry out an extensive series of tests on three-electrode electrostatic lenses, as a function of geometrical and voltage parameters. Our studies enabled us to select optimum designs for the lenses in the electron microscope. We early on discovered that, in general, electron lenses are not “thin” lenses, and that aberrations of focal point and aberrations of focal length are not the same. I found electron optics to be an intriguing blend of theory and experiment. A laboratory version of the electron microscope was built and tested, and a report was given at the December 1947 EMSA meeting. The micrograph in fig. 1 is one of several which were presented at the meeting. This micrograph also appeared on the cover of the January 1949 issue of Journal of Applied Physics. These were exciting times in electron microscopy; it seemed that almost everything that happened was new. Our opportunities to publish were limited to patents because Mr. Farrand envisaged a commercial instrument. Regrettably, a commercial version of our laboratory microscope was not produced.


1978 ◽  
Vol 39 (12) ◽  
pp. 1355-1363 ◽  
Author(s):  
L.G. Caron ◽  
M. Miljak ◽  
D. Jerome

1986 ◽  
Vol 150 (10) ◽  
pp. 321
Author(s):  
V.L. Dunin-Barkovskii

2020 ◽  
Author(s):  
Polla Rouf ◽  
Pitsiri Sukkaew ◽  
Lars Ojamäe ◽  
Henrik Pedersen

<p>Aluminium nitride (AlN) is a semiconductor with a wide range of applications from light emitting diodes to high frequency transistors. Electronic grade AlN is routinely deposited at 1000 °C by chemical vapour deposition (CVD) using trimethylaluminium (TMA) and NH<sub>3</sub> while low temperature CVD routes to high quality AlN are scarce and suffer from high levels of carbon impurities in the film. We report on an ALD-like CVD approach with time-resolved precursor supply where thermally induced desorption of methyl groups from the AlN surface is enhanced by the addition of an extra pulse, H<sub>2</sub>, N<sub>2</sub> or Ar between the TMA and NH<sub>3</sub> pulses. The enhanced desorption allowed deposition of AlN films with carbon content of 1 at. % at 480 °C. Kinetic- and quantum chemical modelling suggest that the extra pulse between TMA and NH<sub>3</sub> prevents re-adsorption of desorbing methyl groups terminating the AlN surface after the TMA pulse. </p>


Sign in / Sign up

Export Citation Format

Share Document