directed energy
Recently Published Documents


TOTAL DOCUMENTS

1031
(FIVE YEARS 656)

H-INDEX

31
(FIVE YEARS 13)

2022 ◽  
Vol 34 (1) ◽  
pp. 012018
Author(s):  
Cory D. Jamieson ◽  
Marissa C. Brennan ◽  
Todd J. Spurgeon ◽  
Stephen W. Brown ◽  
Jayme S. Keist ◽  
...  

Author(s):  
Silvia Gallucci ◽  
Serena Fiocchi ◽  
Marta Bonato ◽  
Emma Chiaramello ◽  
Gabriella Tognola ◽  
...  

(1) Background: Radiofrequency radiations are used in most devices in current use and, consequently, the assessment of the human exposure to the radiofrequency radiations has become an issue of strong interest. Even if in the military field there is wide use of radiofrequency devices, a clear picture on the exposure assessment to the electromagnetic field of the human beings in the military scenario is still missing. (2) Methods: a review of the scientific literature regarding the assessment of the exposure of the military personnel to the RF specific to the military environment, was performed. (3) Results: the review has been performed grouping the scientific literature by the typology of military devices to which the military personnel can be exposed to. The military devices have been classified in four main classes, according to their intended use: communication devices, localization/surveillance devices, jammers and EM directed-energy weapons. (4) Discussion and Conclusions: The review showed that in the exposure conditions here evaluated, there were only occasional situations of overexposure, whereas in the majority of the conditions the exposure was below the worker exposure limits. Nevertheless, the limited number of studies and the lack of exposure assessment studies for some devices prevent us to draw definitive conclusions and encourage further studies on military exposure assessment.


Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 156
Author(s):  
Felipe Klein Fiorentin ◽  
Duarte Maciel ◽  
Jorge Gil ◽  
Miguel Figueiredo ◽  
Filippo Berto ◽  
...  

In recent years, the industrial application of Inconel 625 has grown significantly. This material is a nickel-base alloy, which is well known for its chemical resistance and mechanical properties, especially in high-temperature environments. The fatigue performance of parts produced via Metallic Additive Manufacturing (MAM) heavily rely on their manufacturing parameters. Therefore, it is important to characterize the properties of alloys produced by a given set of parameters. The present work proposes a methodology for characterization of the mechanical properties of MAM parts, including the material production parametrization by Laser Directed Energy Deposition (DED). The methodology consists of the testing of miniaturized specimens, after their production in DED, supported by a numerical model developed and validated by experimental data for stress calculation. An extensive mechanical characterization, with emphasis on high-cycle fatigue, of Inconel 625 produced via DED is herein discussed. The results obtained using miniaturized specimens were in good agreement with standard-sized specimens, therefore validating the applied methodology even in the case of some plastic effects. Regarding the high-cycle fatigue properties, the samples produced via DED presented good fatigue performance, comparable with other competing Metallic Additive Manufactured (MAMed) and conventionally manufactured materials.


Author(s):  
Tobias Hauser ◽  
Raven T. Reisch ◽  
Tobias Kamps ◽  
Alexander F. H. Kaplan ◽  
Joerg Volpp

AbstractAcoustic emissions in directed energy deposition processes such as wire arc additive manufacturing and directed energy deposition with laser beam/metal are investigated within this work, as many insights about the process can be gained from this. In both processes, experienced operators can hear whether a process is running stable or not. Therefore, different experiments for stable and unstable processes with common process anomalies were carried out, and the acoustic emissions as well as process camera images were captured. Thereby, it was found that stable processes show a consistent mean intensity in the acoustic emissions for both processes. For wire arc additive manufacturing, it was found that by the Mel spectrum, a specific spectrum adapted to human hearing, the occurrence of different process anomalies can be detected. The main acoustic source in wire arc additive manufacturing is the plasma expansion of the arc. The acoustic emissions and the occurring process anomalies are mainly correlating with the size of the arc because that is essentially the ionized volume leading to the air pressure which causes the acoustic emissions. For directed energy deposition with laser beam/metal, it was found that by the Mel spectrum, the occurrence of an unstable process can also be detected. The main acoustic emissions are created by the interaction between the powder and the laser beam because the powder particles create an air pressure through the expansion of the particles from the solid state to the liquid state when these particles are melted. These findings can be used to achieve an in situ quality assurance by an in-process analysis of the acoustic emissions.


2022 ◽  
Author(s):  
Emmanuel Duplay ◽  
Zhuo Fan Bao ◽  
Sebastian Rodriguez Rosero ◽  
Arnab Sinha ◽  
Andrew Jason Higgins

The application of directed energy to spacecraft mission design is explored using rapid transit to Mars as the design objective. An Earth-based laser array of unprecedented size (10-m diameter) and power (100 MW) is assumed to be enabled by ongoing developments in photonic laser technology. A phased-array laser of this size and incorporating atmospheric compensation would be able to deliver laser power to spacecraft in cislunar space, where the incident laser is focused into a hydrogen heating chamber via an inflatable reflector. The hydrogen propellant is then exhausted through a nozzle to realize specific impulses of 3000 s. The architecture is shown to be immediately reusable via a burn-back maneuver to return the propulsion unit while still within range of the Earth-based laser. The ability to tolerate much greater laser fluxes enables realizing the combination of high thrust and high specific impulse, making this approach favorable in comparison to laser-electric propulsion and occupying a parameter space similar to gas-core nuclear thermal rockets (without the requisite reactor). The heating chamber and its associated regenerative cooling and propellant handling systems are crucial elements of the design that receive special attention in this study. The astrodynamics and the extreme aerocapture maneuver required at Mars arrival after a 45-day transit are also analyzed in detail. The application of laser-thermal propulsion as an enabling technology for other rapid transit missions in the solar system and beyond is discussed.


Sign in / Sign up

Export Citation Format

Share Document