scholarly journals A Highly Efficient Approach to the Self-Assembly of Hexagonal Cavity-Cored Tris[2]pseudorotaxanes from Several Components via Multiple Noncovalent Interactions

2007 ◽  
Vol 129 (46) ◽  
pp. 14187-14189 ◽  
Author(s):  
Hai-Bo Yang ◽  
Koushik Ghosh ◽  
Brian H. Northrop ◽  
Yao-Rong Zheng ◽  
Matthew M. Lyndon ◽  
...  
Ionics ◽  
2021 ◽  
Vol 27 (4) ◽  
pp. 1611-1618
Author(s):  
Xiaowen Ge ◽  
Xiaomei Du ◽  
Yin Sun ◽  
Junjie Zhang ◽  
Zhongyu Qiu ◽  
...  

MRS Advances ◽  
2020 ◽  
Vol 5 (42) ◽  
pp. 2147-2155
Author(s):  
Sudi Chen ◽  
Xitong Ren ◽  
Shufang Tian ◽  
Jiajie Sun ◽  
Feng Bai

AbstractThe self-assembly of optically active building blocks into functional nanocrystals as high-activity photocatalysts is a key in the field of photocatalysis. Cobalt porphyrin with abundant catalytic properties is extensively studied in photocatalytic water oxidation and CO2 reduction. Here, we present the fabrication of cobalt porphyrin nanocrystals through a surfactant-assisted interfacial self-assembly process using Co-tetra(4-pyridyl) porphyrin as building block. The self-assembly process relies on the combined noncovalent interactions such as π-π stacking and axial Co-N coordination between individual porphyrin molecules within surfactant micelles. Tuning different reaction conditions (temperature, the ratio of co-solvent DMF) and types of surfactant, various nanocrystals with well-defined 1D to 3D morphologies such as nanowires, nanorods and nano hexagonal prism were obtained. Due to the ordered accumulation of molecules, the nanocrystals exhibit the properties of the enhanced capability of visible light capture and can conduce to improve the transport and separation efficiency of the photogenerated carriers, which is important for photocatalysis. Further studies of photocatalytic CO2 reduction are being performed to address the relationship between the size and shape of the nanocrystals with the photocatalytic activity.


2006 ◽  
Vol 25 (22) ◽  
pp. 5276-5285 ◽  
Author(s):  
Seung Uk Son ◽  
Jeffrey A. Reingold ◽  
Gene B. Carpenter ◽  
Paul T. Czech ◽  
Dwight A. Sweigart

2020 ◽  
Vol 56 (65) ◽  
pp. 9288-9291 ◽  
Author(s):  
Zhenfeng He ◽  
Yufeng Huo ◽  
Chao Wang ◽  
Duo Pan ◽  
Binbin Dong ◽  
...  

The preparation of host imine macrocycles and the self-assembly aggregation process are merged into one single step for self-assembly to form dynamic imine macrocyclic supramolecular polymers.


Langmuir ◽  
2019 ◽  
Vol 35 (15) ◽  
pp. 5271-5280 ◽  
Author(s):  
Kristen N. Johnson ◽  
Matthew J. Hurlock ◽  
Qiang Zhang ◽  
K. W. Hipps ◽  
Ursula Mazur

2015 ◽  
Vol 11 ◽  
pp. 2343-2349 ◽  
Author(s):  
Xiang Sun ◽  
Guoqiao Lai ◽  
Zhifang Li ◽  
Yuwen Ma ◽  
Xiao Yuan ◽  
...  

This paper reports the self-assembly of two new tetrathiafulvalene (TTF) derivatives that contain one or two urethane groups. The formation of nanoribbons was evidenced by scanning electron microscopy (SEM) and X-ray diffraction (XRD), which showed that the self-assembly ability of T 1 was better than that of T 2 . The results revealed that more urethane groups in a molecule did not necessarily instigate self-assembly. UV–vis and FTIR spectra were measured to explore noncovalent interactions. The driving forces for self-assembly of TTF derivatives were mainly hydrogen bond interactions and π–π stacking interactions. The electronic conductivity of the T 1 and T 2 films was tested by a four-probe method.


2016 ◽  
Vol 27 (1) ◽  
pp. 173-177 ◽  
Author(s):  
Xiao-Wei Cui ◽  
Shi-Yan Chen ◽  
Chuan-Zeng Wang ◽  
Wen-Xuan Zhao ◽  
Tao Sun ◽  
...  

Author(s):  
M. Kessel ◽  
R. MacColl

The major protein of the blue-green algae is the biliprotein, C-phycocyanin (Amax = 620 nm), which is presumed to exist in the cell in the form of distinct aggregates called phycobilisomes. The self-assembly of C-phycocyanin from monomer to hexamer has been extensively studied, but the proposed next step in the assembly of a phycobilisome, the formation of 19s subunits, is completely unknown. We have used electron microscopy and analytical ultracentrifugation in combination with a method for rapid and gentle extraction of phycocyanin to study its subunit structure and assembly.To establish the existence of phycobilisomes, cells of P. boryanum in the log phase of growth, growing at a light intensity of 200 foot candles, were fixed in 2% glutaraldehyde in 0.1M cacodylate buffer, pH 7.0, for 3 hours at 4°C. The cells were post-fixed in 1% OsO4 in the same buffer overnight. Material was stained for 1 hour in uranyl acetate (1%), dehydrated and embedded in araldite and examined in thin sections.


Author(s):  
Xiaorong Zhu ◽  
Richard McVeigh ◽  
Bijan K. Ghosh

A mutant of Bacillus licheniformis 749/C, NM 105 exhibits some notable properties, e.g., arrest of alkaline phosphatase secretion and overexpression and hypersecretion of RS protein. Although RS is known to be widely distributed in many microbes, it is rarely found, with a few exceptions, in laboratory cultures of microorganisms. RS protein is a structural protein and has the unusual properties to form aggregate. This characteristic may have been responsible for the self assembly of RS into regular tetragonal structures. Another uncommon characteristic of RS is that enhanced synthesis and secretion which occurs when the cells cease to grow. Assembled RS protein with a tetragonal structure is not seen inside cells at any stage of cell growth including cells in the stationary phase of growth. Gel electrophoresis of the culture supernatant shows a very large amount of RS protein in the stationary culture of the B. licheniformis. It seems, Therefore, that the RS protein is cotranslationally secreted and self assembled on the envelope surface.


Sign in / Sign up

Export Citation Format

Share Document