Ubiquitous Nature of Rate Retardation in Reversible Addition–Fragmentation Chain Transfer Polymerization

Author(s):  
Kate G. E. Bradford ◽  
Leilah M. Petit ◽  
Richard Whitfield ◽  
Athina Anastasaki ◽  
Christopher Barner-Kowollik ◽  
...  
2004 ◽  
Vol 57 (12) ◽  
pp. 1125 ◽  
Author(s):  
Michelle L. Coote

This article highlights some of the recent contributions that computational quantum chemistry has made to the understanding of the reversible addition fragmentation chain transfer (RAFT) polymerization process. These include recent studies of rate retardation in cumyl dithiobenzoate mediated polymerization of styrene and methyl acrylate and the xanthate mediated polymerization of vinyl acetate, and studies of the effects of substituents on the addition and fragmentation reactions in prototypical systems and polymer-related systems. The accuracy and applicability of theoretical procedures for studying free-radical polymerization are also discussed, and the methodology is evaluated using the homopropagation rate coefficient of methyl acrylate as a test case. The review concludes with a brief discussion of possible future developments in the field.


e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 317-327
Author(s):  
Chenliang Shi ◽  
Ling Lin ◽  
Yukun Yang ◽  
Wenjia Luo ◽  
Maoqing Deng ◽  
...  

AbstractThe influence of density of amino groups, nanoparticles dimension and pH on the interaction between end-functionalized polymers and nanoparticles was extensively investigated in this study. PS–NH2 and H2N–PS–NH2 were prepared using reversible addition–fragmentation chain transfer polymerization and atom transfer radical polymerization. Zero-dimensional carbon dots with sulfonate groups, one-dimensional cellulose nanocrystals with sulfate groups and two-dimensional graphene with sulfonate groups in the aqueous phase were added into the toluene phase containing the aminated PS. The results indicate that aminated PS exhibited the strongest interfacial activity after compounding with sulfonated nanoparticles at a pH of 3. PS ended with two amino groups performed better in reducing the water/toluene interfacial tension than PS ended with only one amino group. The dimension of sulfonated nanoparticles also contributed significantly to the reduction in the water/toluene interfacial tension. The minimal interfacial tension was 4.49 mN/m after compounding PS–NH2 with sulfonated zero-dimensional carbon dots.


2007 ◽  
Vol 129 (33) ◽  
pp. 10086-10087 ◽  
Author(s):  
Chong Cheng ◽  
Guorong Sun ◽  
Ezat Khoshdel ◽  
Karen L. Wooley

2001 ◽  
Vol 39 (16) ◽  
pp. 2777-2783 ◽  
Author(s):  
Martina Stenzel-Rosenbaum ◽  
Thomas P. Davis ◽  
Vicki Chen ◽  
Anthony G. Fane

Sign in / Sign up

Export Citation Format

Share Document