computational quantum chemistry
Recently Published Documents


TOTAL DOCUMENTS

99
(FIVE YEARS 13)

H-INDEX

15
(FIVE YEARS 1)

Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4110
Author(s):  
Eric D. Glendening ◽  
Frank Weinhold

We employ the tools of natural bond orbital (NBO) and natural resonance theory (NRT) analysis to demonstrate the robustness, consistency, and accuracy with which Linus Pauling’s qualitative conceptions of directional hybridization and resonance delocalization are manifested in all known variants of modern computational quantum chemistry methodology.


Author(s):  
Juan C. Zapata Trujillo ◽  
Anna-Maree Syme ◽  
Keiran N. Rowell ◽  
Brendan P. Burns ◽  
Ebubekir S. Clark ◽  
...  

Phosphine is now well-established as a biosignature, which has risen to prominence with its recent tentative detection on Venus. To follow up this discovery and related future exoplanet biosignature detections, it is important to spectroscopically detect the presence of phosphorus-bearing atmospheric molecules that could be involved in the chemical networks producing, destroying or reacting with phosphine. We start by enumerating phosphorus-bearing molecules (P-molecules) that could potentially be detected spectroscopically in planetary atmospheres and collecting all available spectral data. Gaseous P-molecules are rare, with speciation information scarce. Very few molecules have high accuracy spectral data from experiment or theory; instead, the best current spectral data was obtained using a high-throughput computational algorithm, RASCALL, relying on functional group theory to efficiently produce approximate spectral data for arbitrary molecules based on their component functional groups. Here, we present a high-throughput approach utilizing established computational quantum chemistry methods (CQC) to produce a database of approximate infrared spectra for 958 P-molecules. These data are of interest for astronomy and astrochemistry (importantly identifying potential ambiguities in molecular assignments), improving RASCALL's underlying data, big data spectral analysis and future machine learning applications. However, this data will probably not be sufficiently accurate for secure experimental detections of specific molecules within complex gaseous mixtures in laboratory or astronomy settings. We chose the strongly performing harmonic ωB97X-D/def2-SVPD model chemistry for all molecules and test the more sophisticated and time-consuming GVPT2 anharmonic model chemistry for 250 smaller molecules. Limitations to our automated approach, particularly for the less robust GVPT2 method, are considered along with pathways to future improvements. Our CQC calculations significantly improve on existing RASCALL data by providing quantitative intensities, new data in the fingerprint region (crucial for molecular identification) and higher frequency regions (overtones, combination bands), and improved data for fundamental transitions based on the specific chemical environment. As the spectroscopy of most P-molecules have never been studied outside RASCALL and this approach, the new data in this paper is the most accurate spectral data available for most P-molecules and represent a significant advance in the understanding of the spectroscopic behavior of these molecules.


Author(s):  
Brian Gentry ◽  
Tae Hoon Choi ◽  
William S. Belfield ◽  
John A. Keith

Rational design of molecular chelating agents requires a detailed understanding of physicochemical ligand-metal interactions in solvent phase. Computational quantum chemistry methods should be able to provide this, but computational reports...


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Mansour H. Almatarneh ◽  
Imarat Y. Alnemrat ◽  
Reema A. Omeir ◽  
Lawrence M. Pratt ◽  
Thi Xuan Thi Luu ◽  
...  

The conversion of brown grease using pyrolysis reactions represents a very promising option for the production of renewable fuels and chemicals. Brown grease forms a mixture of alkanes, alkenes, and ketones at a temperature above 300°C at atmospheric pressure. This work is a computational study of the detailed reaction mechanisms of brown grease pyrolysis using DFT methodology. Prior experimental investigations confirmed product formation consistent with a set of radical reactions with CO2 elimination, as well as ketone by product formation, CO forming reactions, and formation of alcohols and aldehydes as minor byproducts. In this work, computational quantum chemistry was used to explore these reactions in greater detail. Particularly, a nonradical pathway formed ketone byproducts via the ketene, which we refer to as Pathways A1 and A2. Radical formation by thermal decomposition of unsaturated fatty acids initiates a set of reactions which eliminate CO2, regenerating alkyl radicals leading to hydrocarbon products (Pathway B). A third pathway (Pathway C) is an alternative set of radical reactions, resulting in decarbonylation and formation of minor byproducts. The results of the calculations are in good agreement with recent experimental studies.


2020 ◽  
Vol 19 (07) ◽  
pp. 2030001
Author(s):  
A. J. C. Varandas

Since there is no exact solution for problems in physics and chemistry, extrapolation methods may assume a key role in quantitative quantum chemistry. Two topics where it bears considerable impact are addressed, both at the heart of computational quantum chemistry: electronic structure and reaction dynamics. In the first, the problem of extrapolating the energy obtained by solving the electronic Schrödinger equation to the limit of the complete one-electron basis set is addressed. With the uniform-singlet-and-triplet-extrapolation (USTE) scheme at the focal point, the emphasis is on recent updates covering from the energy itself to other molecular properties. The second topic refers to extrapolation of quantum mechanical reactive scattering probabilities from zero total angular momentum to any of the values that it may assume when running quasiclassical trajectories, QCT/QM-[Formula: see text]J. With the extrapolation guided in both cases by physically motivated asymptotic theories, realism is seeked by avoiding unsecure jumps into the unknown. Although, mostly review oriented, a few issues are addressed for the first time here and there. Prospects for future work conclude the overview.


Sign in / Sign up

Export Citation Format

Share Document