Asymmetric Alkylation of N-Sulfonylbenzamides with Vinyl Ethers via C–H Bond Activation Catalyzed by Hydroxoiridium/Chiral Diene Complexes

2016 ◽  
Vol 138 (12) ◽  
pp. 4010-4013 ◽  
Author(s):  
Miyuki Hatano ◽  
Yusuke Ebe ◽  
Takahiro Nishimura ◽  
Hideki Yorimitsu
Inorganics ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 121
Author(s):  
Takahashi ◽  
Shimbayashi ◽  
Fujita

The reaction of [(Cp*Ir)2(μ-dmpm)(μ-H)][OTf] (2) [Cp* = η5-C5Me5, dmpm = bis(dimethylphosphino)methane] with 2,3-dihydrofuran gives [(Cp*IrH)2(μ-dmpm){μ-(2,3-dihydrofuranyl)}][OTf] (3) in an isolated yield of 70% via the C–H bond activation at the 5-position of 2,3-dihydrofuran. Complex 3 is slowly converted into [(Cp*Ir)2(μ-dmpm)(μ-C=C(H)CH2CH2OH)][OTf] (4) quantitatively via the proton-mediated C–O bond activation. The reaction of 2 with ethyl vinyl ether gives [(Cp*Ir)2(μ-dmpm)(μ-CH=CH2)][OTf] (5) in the isolated yield of 64% via the successive activation of C–H and C–O bonds.


Synthesis ◽  
2021 ◽  
Author(s):  
Kotone Murakami ◽  
Kana Sakamoto ◽  
Takahiro Nishimura

Chiral phosphoramidite−olefin hybrid ligands were found to be effective in the iridium-catalyzed asymmetric alkylation of N-arylbenzamides with vinyl ethers. The reaction was catalyzed by a hydroxoiridium catalyst coordinated with the hybrid ligand to give the corresponding products in high yields with high branch- and enantioselectivity.


2020 ◽  
Author(s):  
Shubham Deolka ◽  
Orestes Rivada Wheelaghan ◽  
Sandra Aristizábal ◽  
Robert Fayzullin ◽  
Shrinwantu Pal ◽  
...  

We report selective formation of heterobimetallic PtII/CuI complexes that demonstrate how facile bond activation processes can be achieved by altering reactivity of common organoplatinum compounds through their interaction with another metal center. The interaction of the Cu center with Pt center and with a Pt-bound alkyl group increases the stability of PtMe2 towards undesired rollover cyclometalation. The presence of the CuI center also enables facile transmetalation from electron-deficient tetraarylborate [B(ArF)4]- anion and mild C-H bond cleavage of a terminal alkyne, which was not observed in the absence of an electrophilic Cu center. The DFT study indicates that the role of Cu center acts as a binding site for alkyne substrate, while activating its terminal C-H bond.


2020 ◽  
Author(s):  
Sukdev Bag ◽  
Sadhan Jana ◽  
Sukumar Pradhan ◽  
Suman Bhowmick ◽  
Nupur Goswami ◽  
...  

<p>Despite the widespread applications of C–H functionalization, controlling site selectivity remains a significant challenge. Covalently attached directing group (DG) served as an ancillary ligand to ensure proximal <i>ortho</i>-, distal <i>meta</i>- and <i>para</i>-C-H functionalization over the last two decades. These covalently linked DGs necessitate two extra steps for a single C–H functionalization: introduction of DG prior to C–H activation and removal of DG post-functionalization. We introduce here a transient directing group for distal C(<i>sp<sup>2</sup></i>)-H functionalization <i>via</i> reversible imine formation. By overruling facile proximal C-H bond activation by imine-<i>N</i> atom, a suitably designed pyrimidine-based transient directing group (TDG) successfully delivered selective distal C-C bond formation. Application of this transient directing group strategy for streamlining the synthesis of complex organic molecules without any necessary pre-functionalization at the distal position has been explored.</p>


Sign in / Sign up

Export Citation Format

Share Document