Hypervalent Iodine-Mediated Oxygenation of N,N-Diaryl Tertiary Amines: Intramolecular Functionalization of sp3 C–H Bonds Adjacent to Nitrogen

2014 ◽  
Vol 79 (21) ◽  
pp. 10581-10587 ◽  
Author(s):  
Ningning Zhang ◽  
Ran Cheng ◽  
Daisy Zhang-Negrerie ◽  
Yunfei Du ◽  
Kang Zhao
2015 ◽  
Vol 56 (41) ◽  
pp. 5628-5631 ◽  
Author(s):  
Hang Shen ◽  
Xiaohui Zhang ◽  
Qing Liu ◽  
Jing Pan ◽  
Wen Hu ◽  
...  

ChemInform ◽  
2016 ◽  
Vol 47 (4) ◽  
pp. no-no
Author(s):  
Hang Shen ◽  
Xiaohui Zhang ◽  
Qing Liu ◽  
Jing Pan ◽  
Wen Hu ◽  
...  

2015 ◽  
Vol 13 (10) ◽  
pp. 2884-2889 ◽  
Author(s):  
M. Kamlar ◽  
I. Císařová ◽  
J. Veselý

The alkynylation of various nitrogen- and/or sulphur-containing heterocyclic compounds using hypervalent iodine TMS-EBX by utilization of tertiary amines under mild conditions is described.


ChemInform ◽  
2015 ◽  
Vol 46 (16) ◽  
pp. no-no
Author(s):  
Ningning Zhang ◽  
Ran Cheng ◽  
Daisy Zhang-Negrerie ◽  
Yunfei Du ◽  
Kang Zhao

2018 ◽  
Author(s):  
Asim Maity ◽  
Sung-Min Hyun ◽  
Alan Wortman ◽  
David Powers

<p>Hypervalent iodine(V) reagents, such as Dess-Martin periodinane (DMP) and 2-iodoxybenzoic acid (IBX), are broadly useful oxidants in chemical synthesis. Development of strategies to access these reagents from O2 would immediately enable use of O2 as a terminal oxidant in a broad array of substrate oxidation reactions. Recently we disclosed the aerobic synthesis of I(III) reagents by intercepting reactive oxidants generated during aldehyde autoxidation. Here, we couple aerobic oxidation of iodobenzenes with disproportionation of the initially generated I(III) compounds to generate I(V) reagents. The aerobically generated I(V) reagents exhibit substrate oxidation chemistry analogous to that of DMP. Further, the developed aerobic generation of I(V) has enabled the first application of I(V) intermediates in aerobic oxidation catalysis.</p>


Author(s):  
Arumugavel Murugan ◽  
Venkata Nagarjuna Babu ◽  
Nagaraj Sabarinathan ◽  
Sharada Duddu. S

Here we report a visible-light-promoted metal-free regioselective C3-H trifluoromehtylation reaction that proceeds via radical mechanism and which supported by control experiments. The combination of photoredox catalysis and hypervalent iodine reagent provides a practical approach for the present trifluoromethylation reaction and synthesis of a library of trifluoromethylated indazoles.


2019 ◽  
Author(s):  
Sayad Doobary ◽  
Alexi Sedikides ◽  
Henry caldora ◽  
Darren poole ◽  
Alastair Lennox

Fluorinated alkyl groups are important motifs in bioactive compounds, positively influencing pharmacokinetics, potency and F conformation. The oxidative difluorination of alkenes represents an H important strategy for their preparation, yet current methods are limited in their alkene-types and tolerance of electron-rich, readily oxidized functionalities, as well as in their scalability. Herein, we report a method for the difluorination of a number of unactivated alkene-types that is tolerant of electron-rich functionality, giving products that are otherwise unattainable. Key to success is the electrochemical generation of a hypervalent iodine mediator (in the presence of nucleophilic fluoride and HFIP) using an ‘ex-cell’ approach, which avoids the oxidative decomposition of the substrate. The more sustainable conditions give good to excellent yields of product in up to decagram scales<br>


2019 ◽  
Author(s):  
Christopher J. Legacy ◽  
Frederick T. Greenaway ◽  
Marion Emmert

We report detailed mechanistic investigations of an iron-based catalyst system, which allows the α-C-H oxidation of a wide variety of amines, including acyclic tertiary aliphatic amines, to afford dealkylated or amide products. In contrast to other catalysts that affect α-C-H oxidations of tertiary amines, the system under investigation employs exclusively peroxy esters as oxidants. More common oxidants (e.g. tBuOOH) previously reported to affect amine oxidations via free radical pathways do not provide amine α-C-H oxidation products in combination with the herein described catalyst system. Motivated by this difference in reactivity to more common free radical systems, the investigations described herein employ initial rate kinetics, kinetic profiling, Eyring studies, kinetic isotope effect studies, Hammett studies, ligand coordination studies, and EPR studies to shed light on the Fe catalyst system. The obtained data suggest that the catalytic mechanism proceeds through C-H abstraction at a coordinated substrate molecule. This rate-determining step occurs either at an Fe(IV) oxo pathway or a 2-electron pathway at a Fe(II) intermediate with bound oxidant. We further show via kinetic profiling and EPR studies that catalyst activation follows a radical pathway, which is initiated by hydrolysis of PhCO3 tBu to tBuOOH in the reaction mixture. Overall, the obtained mechanistic data support a non-classical, Fe catalyzed pathway that requires substrate binding, thus inducing selectivity for α-C-H functionalization.<br>


2013 ◽  
Vol 33 (4) ◽  
pp. 717-722 ◽  
Author(s):  
Wei HE ◽  
Songbo HE ◽  
Chenglin SUN ◽  
Kaikai WU ◽  
Liandi WANG ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document