Toward Efficient Chemical Potential Calculations by Expanded Ensemble Simulations; to Make the Free Energy Pathway Fairly Level

2006 ◽  
Vol 110 (31) ◽  
pp. 15514-15524 ◽  
Author(s):  
Kai Lüder ◽  
Roland Kjellander
2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Joonho Kim ◽  
Seok Kim ◽  
Jaewon Song

Abstract We study the asymptotic behavior of the (modified) superconformal index for 4d $$ \mathcal{N} $$ N = 1 gauge theory. By considering complexified chemical potential, we find that the ‘high-temperature limit’ of the index can be written in terms of the conformal anomalies 3c − 2a. We also find macroscopic entropy from our asymptotic free energy when the Hofman-Maldacena bound 1/2 < a/c < 3/2 for the interacting SCFT is satisfied. We study $$ \mathcal{N} $$ N = 1 theories that are dual to AdS5 × Yp,p and find that the Cardy limit of our index accounts for the Bekenstein-Hawking entropy of large black holes.


1990 ◽  
Vol 209 ◽  
Author(s):  
H. Y. Wang ◽  
R. Najafabadi ◽  
D. J. Srolovitz ◽  
R. Lesar

ABSTRACTA new, accurate method for determining equilibrium segregation to defects in solids is employed to examine the segregation of Cu to grain boundaries in Cu-Ni alloys. The results are in very good agreement with the ones given by Monte Carlo. This method is based upon a point approximation for the configurational entropy, an Einstein model for vibrational contributions to the free energy. To achieve the equilibrium state of a defect in an alloy the free energy is minimized with respect to atomic coordinates and composition of each site at constant chemical potential. One of the main advantages this new method enjoys over other methods such as Monte Carlo, is the efficiency with which the atomic structure of a defect, segregation and thermodynamic properties can be determined. The grain boundary free energy can either increase or decrease with increasing temperature due to the competition between energetic and configurational entropy terms. In general, the grain boundary free energy increases with temperature when the segregation is strongest.


2003 ◽  
Vol 52 (9) ◽  
pp. 2342
Author(s):  
Sheng Zheng-Mao ◽  
Luo Jun-Wei

2016 ◽  
Vol 19 (1) ◽  
pp. 9-14 ◽  
Author(s):  
Mohammad Firoz Khan ◽  
Ridwan Bin Rashid ◽  
Md Yeunus Mian ◽  
Mohammad S Rahman ◽  
Mohammad A Rashid

A computational study of medium effect on solvation free energy, dipole moment, polarizability, hyperpolarizability and different molecular properties like chemical hardness & softness, chemical potential, electronegativity and electrophilicity index of metronidazole have been reported in this paper. Becke, 3-parameter, Lee-Yang-Parr (B3LYP) level of theory with 6-31G (d,p) basis set was applied for gas phase and solution. The effect of solvent polarity on solvation free energy, dipole moment, polarizability, hyperpolarizability and molecular properties were calculated by employing Solvation Model on Density (SMD). The solvation free energies and dipole moment of metronidazole were found to be increased in nonpolar to polar solvents. The dipole moment of metronidazole was higher in different solvent than that of the gas phase. Moreover, from non-polar to polar solvents the chemical potential, electronegativity and electrophilicity index were increased. On the other hand, opposite relation was found in the case of chemical hardness and softness. The results obtained in this study may lead to understand the stability and reactivity of metronidazole and the results will be of assistance to use the title molecule as reaction intermediates and pharmaceuticals.Bangladesh Pharmaceutical Journal 19(1): 9-14, 2016


Sign in / Sign up

Export Citation Format

Share Document