ensemble method
Recently Published Documents


TOTAL DOCUMENTS

749
(FIVE YEARS 320)

H-INDEX

33
(FIVE YEARS 11)

Author(s):  
Mohammad Sadegh Sheikhaei ◽  
Hasan Zafari ◽  
Yuan Tian

In this article, we propose a new encoding scheme for named entity recognition (NER) called Joined Type-Length encoding (JoinedTL). Unlike most existing named entity encoding schemes, which focus on flat entities, JoinedTL can label nested named entities in a single sequence. JoinedTL uses a packed encoding to represent both type and span of a named entity, which not only results in less tagged tokens compared to existing encoding schemes, but also enables it to support nested NER. We evaluate the effectiveness of JoinedTL for nested NER on three nested NER datasets: GENIA in English, GermEval in German, and PerNest, our newly created nested NER dataset in Persian. We apply CharLSTM+WordLSTM+CRF, a three-layer sequence tagging model on three datasets encoded using JoinedTL and two existing nested NE encoding schemes, i.e., JoinedBIO and JoinedBILOU. Our experiment results show that CharLSTM+WordLSTM+CRF trained with JoinedTL encoded datasets can achieve competitive F1 scores as the ones trained with datasets encoded by two other encodings, but with 27%–48% less tagged tokens. To leverage the power of three different encodings, i.e., JoinedTL, JoinedBIO, and JoinedBILOU, we propose an encoding-based ensemble method for nested NER. Evaluation results show that the ensemble method achieves higher F1 scores on all datasets than the three models each trained using one of the three encodings. By using nested NE encodings including JoinedTL with CharLSTM+WordLSTM+CRF, we establish new state-of-the-art performance with an F1 score of 83.7 on PerNest, 74.9 on GENIA, and 70.5 on GermEval, surpassing two recent neural models specially designed for nested NER.


Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 186
Author(s):  
Aleena Swetapadma ◽  
Shobha Agarwal ◽  
Satarupa Chakrabarti ◽  
Soham Chakrabarti ◽  
Adel El-Shahat ◽  
...  

Most of the fault location methods in high voltage direct current (HVDC) transmission lines usemethods which require signals from both ends. It will be difficult to estimate fault location if the signal recorded is not correct due to communication problems.Hence a robust method is required which can locate fault with minimum error. In this work, faults are located using boosting ensembles in HVDC transmission lines based on single terminal direct current (DC) signals. The signals are processed to obtain input features that vary with the fault distance. These input features are obtained by taking maximum of half cycle current signals after fault and minimum of half cycle voltage signals after fault from the root mean square of DC signals. The input features are input to a boosting ensemble for estimating the location of fault. Boosting ensemble method attempts to correct the errors from the previous models and find outputs by combining all models. The boosting ensemble method has been also compared with the decision tree method and thebagging-based ensemble method. Fault locations are estimated using three methods and compared to obtain an optimal method. The boosting ensemble method has better performance than all the other methods in locating the faults. It also validated varying fault resistance, smoothing reactors, boundary faults, pole to ground faults and pole to pole faults. The advantage of the method is that no communication link is needed. Another advantage is that it allowsreach setting up to 99.9% and does not exhibitthe problem of over-fitting. Another advantage is that the percentage error in locating faults is within 1% and has a low realization cost. The proposed method can be implemented in HVDC transmission lines effectively as an alternative to overcome the drawbacks of traveling wave methods.


Author(s):  
Ashis Paul ◽  
Arpan Basu ◽  
Mufti Mahmud ◽  
M. Shamim Kaiser ◽  
Ram Sarkar

AbstractNovel Coronavirus 2019 disease or COVID-19 is a viral disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The use of chest X-rays (CXRs) has become an important practice to assist in the diagnosis of COVID-19 as they can be used to detect the abnormalities developed in the infected patients’ lungs. With the fast spread of the disease, many researchers across the world are striving to use several deep learning-based systems to identify the COVID-19 from such CXR images. To this end, we propose an inverted bell-curve-based ensemble of deep learning models for the detection of COVID-19 from CXR images. We first use a selection of models pretrained on ImageNet dataset and use the concept of transfer learning to retrain them with CXR datasets. Then the trained models are combined with the proposed inverted bell curve weighted ensemble method, where the output of each classifier is assigned a weight, and the final prediction is done by performing a weighted average of those outputs. We evaluate the proposed method on two publicly available datasets: the COVID-19 Radiography Database and the IEEE COVID Chest X-ray Dataset. The accuracy, F1 score and the AUC ROC achieved by the proposed method are 99.66%, 99.75% and 99.99%, respectively, in the first dataset, and, 99.84%, 99.81% and 99.99%, respectively, in the other dataset. Experimental results ensure that the use of transfer learning-based models and their combination using the proposed ensemble method result in improved predictions of COVID-19 in CXRs.


2022 ◽  
pp. 154-178
Author(s):  
Siddhartha Kumar Arjaria ◽  
Vikas Raj ◽  
Sunil Kumar ◽  
Priyanshu Shrivastava ◽  
Monu Kumar ◽  
...  

Skin disease rates have been increasing over the past few decades. It has led to both fatal and non-fatal disabilities all around the world, especially in those areas where medical resources are not good enough. Early diagnosis of skin diseases increases the chances of cure significantly. Therefore, this work is comparing six machine learning algorithms, namely KNN, random forest, neural network, naïve bayes, logistic regression, and SVM, for the prediction of the skin diseases. The information gain, gain ratio, gini decrease, chi-square, and relieff are used to rank the features. This work comprises the introduction, literature review, and proposed methodology parts. In this research paper, a new method of analyzing skin disease has been proposed in which six different data mining techniques are used to develop an ensemble method that integrates all the six data mining techniques as a single one. The ensemble method used on the dermatology dataset gives improved result with 94% accuracy in comparison to other classifier algorithms and hence is more effective in this area.


2021 ◽  
Vol 10 (6) ◽  
pp. 3794-3801
Author(s):  
Yusuf Aliyu Adamu

Malaria is a life-threatening disease that leads to death globally, its early prediction is necessary for preventing the rapid transmission. In this work, an enhanced ensemble learning approach for predicting malaria outbreaks is suggested. Using a mean-based splitting strategy, the dataset is randomly partitioned into smaller groups. The splits are then modelled using a classification and regression tree, and an accuracy-based weighted aging classifier ensemble is used to construct a homogenous ensemble from the several Classification and Regression Tree models. This approach ensures higher performance is achieved. Seven different Algorithms were tested and one ensemble method is used which combines all the seven classifiers together and finally, the accuracy, precision, and sensitivity achieved for the proposed method is 93%, 92%, and 100% respectively, which outperformed better than machine learning classifiers and ensemble method used in this research. The correlation between the variables used is established and how each factor contributes to the malaria incidence. The result indicates that malaria outbreaks can be predicted successfully using the suggested technique.


Membranes ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 974
Author(s):  
Seungho Choe

Cell-penetrating peptides (CPPs) have been widely used for drug-delivery agents; however, it has not been fully understood how they translocate across cell membranes. The Weighted Ensemble (WE) method, one of the most powerful and flexible path sampling techniques, can be helpful to reveal translocation paths and free energy barriers along those paths. Within the WE approach we show how Arg9 (nona-arginine) and Tat interact with a DOPC/DOPG(4:1) model membrane, and we present free energy (or potential mean of forces, PMFs) profiles of penetration, although a translocation across the membrane has not been observed in the current simulations. Two different compositions of lipid molecules were also tried and compared. Our approach can be applied to any CPPs interacting with various model membranes, and it will provide useful information regarding the transport mechanisms of CPPs.


Electronics ◽  
2021 ◽  
Vol 10 (24) ◽  
pp. 3066
Author(s):  
Do-Yeon Hwang ◽  
Seok-Hwan Choi ◽  
Jinmyeong Shin ◽  
Moonkyu Kim ◽  
Yoon-Ho Choi

In this paper, we propose a new deep learning-based image translation method to predict and generate images after hair transplant surgery from images before hair transplant surgery. Since existing image translation models use a naive strategy that trains the whole distribution of translation, the image translation models using the original image as the input data result in converting not only the hair transplant surgery region, which is the region of interest (ROI) for image translation, but also the other image regions, which are not the ROI. To solve this problem, we proposed a novel generative adversarial network (GAN)-based ROI image translation method, which converts only the ROI and retains the image for the non-ROI. Specifically, by performing image translation and image segmentation independently, the proposed method generates predictive images from the distribution of images after hair transplant surgery and specifies the ROI to be used for generated images. In addition, by applying the ensemble method to image segmentation, we propose a more robust method through complementing the shortages of various image segmentation models. From the experimental results using a real medical image dataset, e.g., 1394 images before hair transplantation and 896 images after hair transplantation, to train the GAN model, we show that the proposed GAN-based ROI image translation method performed better than the other GAN-based image translation methods, e.g., by 23% in SSIM (Structural Similarity Index Measure), 452% in IoU (Intersection over Union), and 42% in FID (Frechet Inception Distance), on average. Furthermore, the ensemble method that we propose not only improves ROI detection performance but also shows consistent performances in generating better predictive images from preoperative images taken from diverse angles.


Sign in / Sign up

Export Citation Format

Share Document