Reply to Comment on “27Al Multiple-Quantum Magic Angle Spinning NMR Study of the Thermal Transformation between the Microporous Aluminum Methylphosphonates AlMePO-β and AlMePO-α”

2000 ◽  
Vol 104 (41) ◽  
pp. 9767-9767
Author(s):  
Steven P. Brown ◽  
Sharon E. Ashbrook ◽  
Stephen Wimperis
2007 ◽  
Vol 62 (11) ◽  
pp. 1422-1432 ◽  
Author(s):  
Kazuhiko Yamada ◽  
Tadashi Shimizu ◽  
Yoshida Mitsuru ◽  
Miwako Asanuma ◽  
Masataka Tansho ◽  
...  

We present a systematic experimental and theoretical investigation of the oxygen chemical shielding and electric-field-gradient tensors in polycrystalline amino acids and a peptide. Analysis of the 17O magic-angle-spinning (MAS), multiple-quantum MAS, and stationary nuclear magnetic resonance (NMR) spectra yield the magnitudes and the relative orientations between the two NMR tensors. The obtained 17O NMR parameters are sensitive to the hydrogen bond environments. We also demonstrate that solid-state 17O NMR is potentially useful for studying the secondary structures of peptides and proteins.


2014 ◽  
Vol 92 (1) ◽  
pp. 9-15 ◽  
Author(s):  
Nuiok M. Dicaire ◽  
Frédéric A. Perras ◽  
David L. Bryce

Sodium valproate is a pharmaceutical with applications in the treatment of epilepsy, bipolar disorder, and other ailments. Sodium valproate can exist in many hydrated and acid-stabilized forms in the solid state, and it can be difficult to obtain precise structural information about many of these. Here, we present a 13C and 23Na solid-state NMR study of several forms of sodium valproate, only one of which has been previously structurally characterized by single-crystal X-ray diffraction. 23Na magic-angle spinning (MAS), double-rotation (DOR), and multiple-quantum magic-angle spinning (MQMAS) NMR spectra are shown to provide useful information on the number of molecules in the asymmetric unit, the local coordination geometry of the sodium cations, and the presence of amorphous phases. Two previously identified forms are shown to be highly similar, or identical, according to the 23Na NMR data. The utility of carrying out both DOR and MQMAS NMR experiments to identify all crystallographically unique sites is demonstrated. 13C cross-polarization MAS NMR spectra also provide complementary information on the number of molecules in the asymmetric unit and the crystallinity of the sample.


Clay Minerals ◽  
2003 ◽  
Vol 38 (4) ◽  
pp. 551-559 ◽  
Author(s):  
H. P. He ◽  
J . G. Guo ◽  
J . X. Zhu ◽  
C. Hu

AbstractThe thermal transformations of kaolinite have been studied using 27Al and 29Si magic angle spinning nuclear magnetic resonance (MAS NMR), X-ray diffraction (XRD), differential thermal analysis (DTA) and thermogravimetric analysis (TG). The experimental results show that this sample is a pure kaolinite which contains ∼3% carbonaceous material as impurity. 27Al and 29Si MAS NMR spectra show that the microstructural evolution of the thermal transformation of kaolinite at 450 –1050ºC is similar to that of the kaolinite– mullite reaction series previously published by many authors. 29Si MAS NMR spectra of mullite at 1190 and 1250ºC display two resonances at ∼ – 87 and –92 ppm, corresponding to sillimanite-type geometry around Si and the typical Si environment of mullite, respectively. At 1350ºC, the splitting of (hk0) and (kh0) of mullite occurs, indicating that the primary mullite transforms into orthorhombic mullite. Simultaneously, the resonance at ∼ – 92 ppm splits into two signals at ∼ –90 and –94 ppm. 27Al MAS NMR spectra of the mullite consist of three signals centred at ∼ –4, 45 and 60 ppm, corresponding to octahedral, distorted tetrahedral and tetrahedral Al sites, respectively.


2010 ◽  
Vol 88 (2) ◽  
pp. 111-123 ◽  
Author(s):  
Kamal H. Mroué ◽  
Abdul-Hamid M. Emwas ◽  
William P. Power

We report the first solid-state 27Al NMR study of three aluminum phthalocyanine dyes: aluminum phthalocyanine chloride, AlPcCl (1); aluminum-1,8,15,22-tetrakis(phenylthio)-29H,31H-phthalocyanine chloride, AlPc(SPh)4Cl (2); and aluminum-2,3-naphthalocyanine chloride, AlNcCl (3). Each of these compounds contains Al3+ ions coordinating to four nitrogen atoms and a chlorine atom. Solid-state 27Al NMR spectra, including multiple-quantum magic-angle spinning (MQMAS) spectra and quadrupolar Carr–Purcell–Meiboom–Gill (QCPMG) spectra of stationary powdered samples have been acquired at multiple high magnetic field strengths (11.7, 14.1, and 21.1 T) to determine their composition and number of aluminum sites, which were analyzed to extract detailed information on the aluminum electric field gradient (EFG) and nuclear magnetic shielding tensors. The quadrupolar parameters for each 27Al site were determined from spectral simulations, with quadrupolar coupling constants (CQ) ranging from 5.40 to 10.0 MHz and asymmetry parameters (η) ranging from 0.10 to 0.50, and compared well with the results of quantum chemical calculations of these tensors. We also report the largest 27Al chemical shielding anisotropy (CSA), with a span of 120 ± 10 ppm, observed directly in a solid material. The combination of MQMAS and computational predictions are used to interpret the presence of multiple aluminum sites in two of the three samples.


2018 ◽  
Vol 57 (14) ◽  
pp. 8390-8395 ◽  
Author(s):  
Bingtian Tu ◽  
He Zhang ◽  
Hao Wang ◽  
Weimin Wang ◽  
Zhengyi Fu

2016 ◽  
Vol 4 (34) ◽  
pp. 13183-13193 ◽  
Author(s):  
Ryohei Morita ◽  
Kazuma Gotoh ◽  
Mika Fukunishi ◽  
Kei Kubota ◽  
Shinichi Komaba ◽  
...  

We examined the state of sodium electrochemically inserted in HC prepared at 700–2000 °C using solid state Na magic angle spinning (MAS) NMR and multiple quantum (MQ) MAS NMR.


1992 ◽  
Vol 70 (4) ◽  
pp. 1229-1235 ◽  
Author(s):  
Gang Wu ◽  
Roderick E. Wasylishen ◽  
William P. Power ◽  
Graziano Baccolini

Phosphorus-31 NMR static powder spectra and high-resolution magic angle spinning spectra have been obtained for a new heterocyclic compound, cis-2,10-dimethyl[1,2,3]benzothiadiphospholo[2,3b][1,2,3]benzothiadiphosphole (1), which contains a P(III)—P(III) single bond. The homonuclear 31P–31P dipolar interaction manifests itself in both the magic angle spinning spectra and the non-spinning line shape. Under the AX spin pair approximation, analysis of the spinning sidebands in the MAS experiment yields a full characterization of the two 31P chemical shielding tensors. This approximation is confirmed by the exact powder line shape simulation for a homonuclear spin pair. Analysis of the dipolar subspectra also yields the absolute sign of 1J(P,P), which is found to be negative. Keywords: phosphorus–phosphorus single bond, chemical shielding tensors, dipolar NMR, MAS, static line shape.


Sign in / Sign up

Export Citation Format

Share Document