Solid-state 17O NMR Study of Small Biological Compounds

2007 ◽  
Vol 62 (11) ◽  
pp. 1422-1432 ◽  
Author(s):  
Kazuhiko Yamada ◽  
Tadashi Shimizu ◽  
Yoshida Mitsuru ◽  
Miwako Asanuma ◽  
Masataka Tansho ◽  
...  

We present a systematic experimental and theoretical investigation of the oxygen chemical shielding and electric-field-gradient tensors in polycrystalline amino acids and a peptide. Analysis of the 17O magic-angle-spinning (MAS), multiple-quantum MAS, and stationary nuclear magnetic resonance (NMR) spectra yield the magnitudes and the relative orientations between the two NMR tensors. The obtained 17O NMR parameters are sensitive to the hydrogen bond environments. We also demonstrate that solid-state 17O NMR is potentially useful for studying the secondary structures of peptides and proteins.

2014 ◽  
Vol 92 (1) ◽  
pp. 9-15 ◽  
Author(s):  
Nuiok M. Dicaire ◽  
Frédéric A. Perras ◽  
David L. Bryce

Sodium valproate is a pharmaceutical with applications in the treatment of epilepsy, bipolar disorder, and other ailments. Sodium valproate can exist in many hydrated and acid-stabilized forms in the solid state, and it can be difficult to obtain precise structural information about many of these. Here, we present a 13C and 23Na solid-state NMR study of several forms of sodium valproate, only one of which has been previously structurally characterized by single-crystal X-ray diffraction. 23Na magic-angle spinning (MAS), double-rotation (DOR), and multiple-quantum magic-angle spinning (MQMAS) NMR spectra are shown to provide useful information on the number of molecules in the asymmetric unit, the local coordination geometry of the sodium cations, and the presence of amorphous phases. Two previously identified forms are shown to be highly similar, or identical, according to the 23Na NMR data. The utility of carrying out both DOR and MQMAS NMR experiments to identify all crystallographically unique sites is demonstrated. 13C cross-polarization MAS NMR spectra also provide complementary information on the number of molecules in the asymmetric unit and the crystallinity of the sample.


2010 ◽  
Vol 88 (2) ◽  
pp. 111-123 ◽  
Author(s):  
Kamal H. Mroué ◽  
Abdul-Hamid M. Emwas ◽  
William P. Power

We report the first solid-state 27Al NMR study of three aluminum phthalocyanine dyes: aluminum phthalocyanine chloride, AlPcCl (1); aluminum-1,8,15,22-tetrakis(phenylthio)-29H,31H-phthalocyanine chloride, AlPc(SPh)4Cl (2); and aluminum-2,3-naphthalocyanine chloride, AlNcCl (3). Each of these compounds contains Al3+ ions coordinating to four nitrogen atoms and a chlorine atom. Solid-state 27Al NMR spectra, including multiple-quantum magic-angle spinning (MQMAS) spectra and quadrupolar Carr–Purcell–Meiboom–Gill (QCPMG) spectra of stationary powdered samples have been acquired at multiple high magnetic field strengths (11.7, 14.1, and 21.1 T) to determine their composition and number of aluminum sites, which were analyzed to extract detailed information on the aluminum electric field gradient (EFG) and nuclear magnetic shielding tensors. The quadrupolar parameters for each 27Al site were determined from spectral simulations, with quadrupolar coupling constants (CQ) ranging from 5.40 to 10.0 MHz and asymmetry parameters (η) ranging from 0.10 to 0.50, and compared well with the results of quantum chemical calculations of these tensors. We also report the largest 27Al chemical shielding anisotropy (CSA), with a span of 120 ± 10 ppm, observed directly in a solid material. The combination of MQMAS and computational predictions are used to interpret the presence of multiple aluminum sites in two of the three samples.


2016 ◽  
Vol 4 (34) ◽  
pp. 13183-13193 ◽  
Author(s):  
Ryohei Morita ◽  
Kazuma Gotoh ◽  
Mika Fukunishi ◽  
Kei Kubota ◽  
Shinichi Komaba ◽  
...  

We examined the state of sodium electrochemically inserted in HC prepared at 700–2000 °C using solid state Na magic angle spinning (MAS) NMR and multiple quantum (MQ) MAS NMR.


1996 ◽  
Vol 7 (7) ◽  
pp. 457-463 ◽  
Author(s):  
M. Bohner ◽  
J. LeMa�tre ◽  
A. P. LeGrand ◽  
J.-B. D'Espinose de la Caillerie ◽  
P. Belgrand

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Aleksander Jaworski ◽  
Jędrzej Piątek ◽  
Liuda Mereacre ◽  
Cordula Braun ◽  
Adam Slabon

Abstract We report the first magic-angle spinning (MAS) nuclear magnetic resonance (NMR) study on Sn(NCN). In this compound the spatially elongated (NCN)2− ion is assumed to develop two distinct forms: either cyanamide (N≡C–N2−) or carbodiimide (−N=C=N−). Our 14N MAS NMR results reveal that in Sn(NCN) the (NCN)2− groups exist exclusively in the form of symmetric carbodiimide ions with two equivalent nitrogen sites, which is in agreement with the X-ray diffraction data. The 14N quadrupolar coupling constant | C Q | $\vert {C}_{\text{Q}}\vert $  ≈ 1.1 MHz for the −N=C=N− ion in Sn(NCN) is low when compared to those observed in molecular compounds that comprise cyano-type N≡C– moieties ( | C Q | $\vert {C}_{\text{Q}}\vert $  > 3.5 MHz). This together with the information from 14N and 13C chemical shifts indicates that solid-state NMR is a powerful tool for providing atomic-level insights into anion species present in these compounds. The experimental NMR results are corroborated by high-level calculations with quantum chemistry methods.


1987 ◽  
Vol 109 (3) ◽  
pp. 761-768 ◽  
Author(s):  
Hellmut Eckert ◽  
James P. Yesinowski ◽  
Daniel J. Sandman ◽  
Christopher S. Velazquez

Sign in / Sign up

Export Citation Format

Share Document