Preparation of highly reactive metal powders. Preparation, characterization, and chemistry of iron, cobalt, nickel, palladium, and platinum microparticles

1983 ◽  
Vol 2 (3) ◽  
pp. 377-383 ◽  
Author(s):  
Arunas V. Kavaliunas ◽  
Ashley Taylor ◽  
Reuben D. Rieke
1979 ◽  
Vol 44 (7) ◽  
pp. 2024-2031 ◽  
Author(s):  
František Vláčil ◽  
Huynh Dang Khanh

The dependence of the distribution ratio of the metal on the concentration of hydrochloric of nitric acid was examined for Fe, Co, Ni and Cu extraction with 0.05M solution of dibenzylsulfoxide in toluene. Iron is extracted considerably more than the other metals, and is better extracted from hydrochloric acid than from nitric acid. The separation factor αFe/M (for 8M-HCl) is of the order of 104; this is not sufficient for a separation of trace quantities of iron from Co, Ni and Cu, but even at lower concentrations of HCl (e.g., 5M) the values is high enough for extraction chromatographic separation. The composition of the iron solvate extracted from HCl or LiCl medium was determined to be HFeCl4.2 B (B = dibenzyl sulfoxide).


2021 ◽  
Vol 2 (1) ◽  
pp. 63-73
Author(s):  
Jéssica D. S. Vicente ◽  
Domingas C. Miguel ◽  
Afonso M. P. Gonçalves ◽  
Diogo M. Cabrita ◽  
José M. Carretas ◽  
...  

Ionic liquids are critical reagents for science and technical processes nowadays. Metals are the most used reagents in the industry. It is crucial to have a deeper understanding of how ionic liquids and metals could interact. In this article the interaction of those two families of compounds is accessed. The dissolution (reaction) of metals with ionic liquids is studied, namely the influence of temperature, redox potential, and availability of an oxidant in the process. The final state achieved by the iron metal samples was also addressed by Mössbauer spectroscopy.


1971 ◽  
Vol 10 (5) ◽  
pp. 347-350
Author(s):  
�. M. Natanson ◽  
T. M. Shvets ◽  
Z. M. Mel'nichenko ◽  
V. S. Sperkach

Sign in / Sign up

Export Citation Format

Share Document